FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Mentry of Heatth and Family Weller.	Determination of Iron as Fe in For	tified Rice Kernel (F	'RK)				
Method No.	FSSAI.FRK.16.004.2023	Revision No. & Date	0.0				
Scope	The method is applicable for estimating the	e iron content in FRK	using				
	Inductively Coupled Plasma (ICP)-Optical Emission Spectrometer (ICP-OES).						
Caution	Concentrated Nitric Acid is highly corrosive and can cause irritation to						
	the eyes, skin, and mucous membrane. Always add acid to water to prevent						
	splattering from overheating and boiling. Clean-up spills promptly with						
	appropriate materials. Handle only inside a fume hood						
	Hydrogen Peroxide: Hydrogen Peroxide	is a strong oxidising	agent that				
	also has corrosive properties. Keep hydro	gen peroxide away fro	om sources				
	of ignition, heat, and moisture, storing in	a tightly closed conta	iner. Keep				
	away from incompatible materials such as	organic materials, me	etals, acids,				
	alkalis, combustible materials, and oxidizin	ig agents.					
	Operation of Microwave Digester involv	es a hot pressurized ac	rid				
	solution. Use appropriate personal protectiv	ve equipment, face pro	otection				
D ' ' '	such as a laboratory coat, safety glasses, ru	bber gloves, and a fun	ne hood.				
Principle	Nitric acid, and hydrogen peroxide are add	ed to the sample in mi	crowave				
	vessels, and the samples are digested using preprogrammed temperature						
	control. The addition of hydrogen peroxide helps reduce carbon and nitrous oxide levels in the digestate. Analysis is performed by an ICP OFS						
	Oughtitation of Fe is achieved essentially simultaneously by comparing the						
	analyte-ISTD response ratios in the unknown samples with a standard						
	anaryte-151D response ratios in the unknown samples with a standard curve constructed from the response ratios of calibration standards						
Annaratus/Instruments	1 Inductively Coupled Plasma Ontical Emission Spectrometer (ICP-						
ripparatus/mstruments	OES)	i Emission Spectrome					
	2. Microwave digester. —A commerc	ial microwave designe	ed for				
	laboratory use at 0–300°C, with a closed-vessel system and controlled						
	temperature ramping capability. Use mar	ufacturer recommend	ed vessels.				
	3. Analytical Balance (capable of wei	ghing 0.0001 g)					
	4. Fume hood.						
	5. Bottle-top dispenser. —PTFE; Adju	stable volume 0.5–5	mL.				
	6. Volumetric pipets. —Class A, asso	rted sizes.					
	7. Digital pipets- 1 mL adjustable, to a	deliver 500 μ L with ac	curacy				
	tolerance of better than 0.8% and precision	on of better than 0.2%	RSD.				
Materials and Reagents	1. Concentrated Nitric acid (Purity- 69	9%)					
	2. Hydrogen peroxide (Purity -30%)						
	3. CRM / Stock Solution - Iron (Purity	y - 1000 mg/Kg)					
	4. Purity of Argon and other gas, if us	ed must fulfill the star	ndard of				
	instrument requirement						

Sample Preparation	1. Grind 50 g of FRK sample.					
	2. Weigh 0.25 g (\pm 0.05 g) of ground kernels.					
	3. Transfer to microwave digestion closed vessel.					
	4. Add 2.0 mL of Hot (60 °C) Milli-O Water					
	5. Add 1.0 mL H ₂ O ₂					
	6. Add 0.5 mI	L of Nitric	acid.			
	7. Loosely car	o the vesse	l and keer	p at 25 °C for 5	min to pre	digest the
	sample				to pro	
	8 Close the m	nicrowave	vessel tiøł	htlv		
	9 Keen at 25	°C for 5 m	in	licij.		
	10 Place the ve	essel rotor	in microw	vave digester		
	10. Flace the v	vessel rotor	in micro	wave digester [*]	and exec	ute a heating
	program equiv	valent to th	at shown	in the Table h	elow for t	otal digestion
	of the sample	alone to th	lut Shown	i ili ilie Tuble b		otur urgestion
	of the sumple					
		Ramn	ino	Hold Time	Temn	Power
	SL. NO	Stag	e	(Minutes)	(^{0}C)	(Watt)
	1	01		20	180	800
	2	02		10	160	800
	3	03		10	140	800
	4	COOL D	OWN	10	-	-
	 12. Cool the vessel to 25 °C after digestion. 13. Add 10 mL of Milli Q water and mix well using a vortex. 14. Transfer to a 100 mL volumetric Flask. 15. Make-up the volume to 100 mL with Milli-Q water. 16. Filter and use for ICP-OES analysis. 					
Preparation of Standard	A) Preparation of intermediate stock solution - 1 (ISS-1) (100 mg/kg)					
solutions	1. Transfer 1.0	mL from	stock sol	lution of iron (1000 mg/l	(xg) in 10 mL
	volumetric flask.					
	2. Add 0.5 mL Nitric acid and make up the volume to 10 mL using Milli-					
	Q water and mix using a vortex.					
	B) Preparation of blank (5% Nitric acid)					
	1. Transfer 7.25 mL of Nitric Acid (69%) into 92.75 mL of Milli Q water					
	in a glass bottle. Mix well.					
	C) Preparation	of calibra	tion stand	dard solutions		
	Prepare the calibration standard solutions using the ISS-1 as indicated in					
	the Table below.					
	Cal.	IS <u>S - 1</u>	VOL. O	F VOL. OF	Final	Final
	Standard	(100	ISS - 1	Nitric acid	d vol.	Conc.
	Solution	mg/mL	(mL)	(mL)	(mL)	(mg/mL)
	LS 7	100	2.00	0.5	10	20.0

	LS 6	100	1.50	0.5	10	15.0	
	LS 5	100	1.00	0.5	10	10.0	
	LS 4	100	0.75	0.5	10	7.5	
	LS 3	100	0.50	0.5	10	5.0	
	LS 2	100	0.20	0.5	10	2.0	
	LS 1	100	0.10	0.5	10	1.0	
	NOTE: Use fre	eshly prepar	ed calibrati	on standard so	olutions for	r the	
	analysis.						
Method of analysis	Instrument: ICI	P-OES					
	Equipment con	Equipment conditions:					
			P	lasma flow (Ai	flow (Argon 12 L/min)		
	Plasma condi	Plasma condition Uptake Delay			(0.7 L/min)		
					W		
	Uptake Delay				25 sec		
	Pump Speed		12 rpm				
	Stabilization		15 sec				
	Numbers of F	Replicates	3.0				
	Resolution		Normal				
	Wavelength		238.204 nm For Iron				
	Read Time						
	Aux flow	10	Radial				
	v lewnig wiod	le	Kaulai				
	Note: The make tuning var manufacti obtain the The injection so	e & model of ties with main trer's instru desired LO equence for s	<i>tinstrumen</i> ke and mod ctions and D e. standards ar	t may be chan lel. Set parame optimize for be	ged. Instru eter as per est resoluti ven below	on to	
	SL.NO.	1	Sample	Num	ber of inie	ctions	
	1	Blank			2		
	2	Linearity	Solution (L	S) - 1	1		
	3	Linearity	Solution (L	$\frac{1}{(S)-2}$	1		
		Linearity	Solution (L	$\frac{2}{S} - 3$	1		
	5	Linearity	$\frac{\text{Solution (L})}{\text{Solution (L)}}$	S) - 4	1		
	5	Linearity	$\frac{\text{Solution (L})}{\text{Solution (L})}$	<u>(S) - 5</u>	1		
		Linearity		\mathbf{S}	1		
	/		Solution (L	S)-01	1		
	8	Linearity	Solution (L	S) - 7	1		
	8	Linearity	Solution (L	<u>S) - 7</u>	1 1 2		
	7 8 9 10	Linearity Blank Sample So	Solution (L Solution (L	S) - 7	1 1 2 1		

		12	Spike sample	1		
			TOTAL INJECTIONS	15		
Calculation with units of expression	 a) Carry out a regression analysis and calculate Regression coefficient (R²) by analyzing the calibration standards including zero as the response for the reagent blank. Should be >0.99 Calculate the Fe content in FRK using the following equation: 					
	$Iron \frac{(Fe) mg}{kg} = \frac{C \times Makeup \ volume}{Sample \ weight \ (g)}$ Where C= concentration from instrument software					
	 The LOD and LOQ are determined by considering the S/N of 3 and 10, respectively, for the Iron in the matrix. i. Limit of Detection 0.5 mg/Kg with respective to the Standard. ii. Limit of Quantification 1.0 mg/Kg in with respective to the Standard. iii. Limit of Quantification 400 mg/Kg in with respective to the sample b) Determine the recovery of Iron by the external spiking method at a spike level of 2000 mg/Kg in six replicates. Calculate the recovery value using the following equation: 					
	whe A = B = C =	Red the concent the natural the spiked	$covery(\%) = \frac{1}{C} \times 100$ tration of Iron in the spiked satisfies content of Iron in the control sconcentration of Iron (mg/kg)	mple (mg/kg) sample (mg/kg)		
Reference	PRT Iron AOA	/MT/FRK/ in Fortified AC 2011.14 Milk Produ	2022/006, Method Validation I Rice Kernel by Using ICP O I: Determination of Minerals a cts, Infant Formula, and Adult	Protocol for Estimation of ES. nd Trace elements in Mill Nutrition.	f k &	
Approved by	Scie	ntific Panel	on Methods of Sampling and	Analysis		