

Introduction to Modern, Effective Food Safety Management

Leon Gorris

Director Regulatory Affairs – Global Food Safety

LEON.GORRIS@UNILEVER.COM

Outline

Modern, effective food safety management

- Why is it needed?
- Evolution in food safety management
- Risk Analysis as the modern framework
- Quantitative Microbiology* to make it effective.

¹ Quantitative Microbiology: e.g. predictive microbiology, quantitative risk assessment.

Why do we need food safety management?

Government perspective (1)

US-CDC estimates that each year roughly:

- 48 million out of ~300 million people get sick (~1 in every 6)
- 128,000 are hospitalized (~1 in 2500)
- 3,000 die of foodborne diseases (~1 in 100,000).

India, estimates:

- 170,000 are hospitalized (~1 in 7000)
- Cost: 28B\$ (5% of GDP).

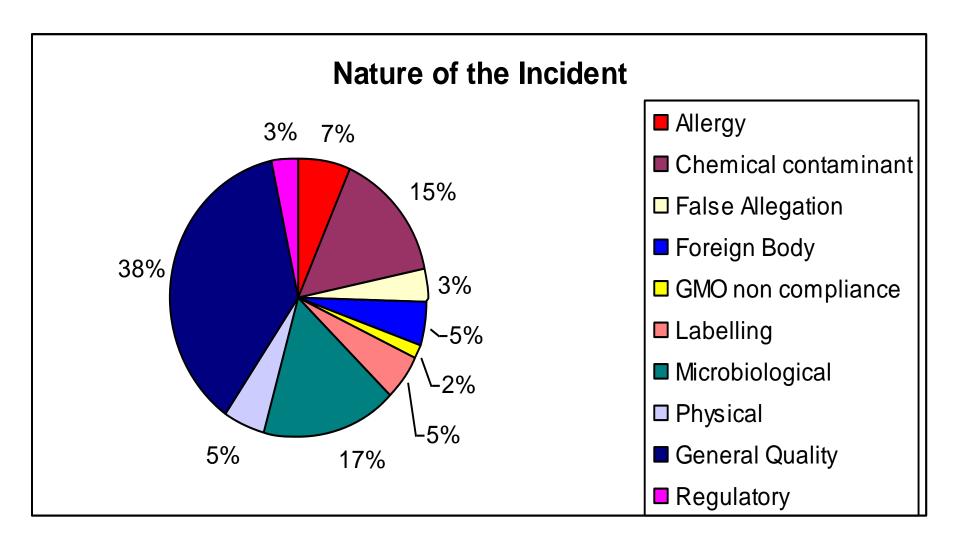
Government perspective (2)

Table 1. Estimated annual number of domestically acquired foodborne illnesses, hospitalizations, and deaths due to 31 pathogens and unspecified agents transmitted through food, United States

Foodborne agents	Estimated annual number of illnesses (90% credible interval)	%	(9	Estimated annual number of hospitalizations 0% credible interv		%		Estimated annual number of deaths 0% credible interva		%
31 known pathogens	9.4 million (6.6–12.7 million)	20		55,961 (39,534–75,741) 44		44	1,351 (712–2,268)		44	
Unspecified agents	38.4 million (19.8–61.2 million)	80	71,878 (9,924–157,340)		56	1,686 (369–3,338)		56		
Total	47.8 million (28.7–71.1 million)	100		127,839 (62,529–215,562)		100		3,037 (1,492–4,983)		100

http://www.cdc.gov/foodborneburden/pdfs/factsheet_a_findings_updated4-13.pdf

Table 2. Top five pathogens causing domestically acquired foodborne illnesses

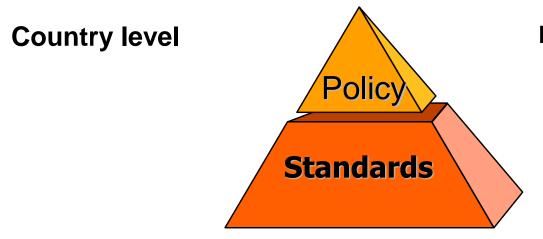

Pathogen	Estimated annual number of illnesses	90% Credible Interval	%
Norovirus	5,461,731	3,227,078-8,309,480	58
Salmonella, nontyphoidal	1,027,561	644,786–1,679,667	11
Clostridium perfringens	965,958	192,316–2,483,309	10
Campylobacter spp.	845,024	337,031-1,611,083	9
Staphylococcus aureus	241,148	72,341–529,417	3
Subtotal	odfs/factsheet a findings updated4-13.pdf		91

http://www.cac.gov/loodbomeburden/pars/lactsneet_a_maings_updated4-13.pdf

Severity of hazards

Human pathogen	IIInesses (%)	Hospital. (%)	Death (%)	
Bacillus cereus	0.198	0.014	0	
Staphylococcus aureus	1.3	2.9	0.107	
Yersinia enterocolitica	0.628	1.8	0.126	
Clostridium botulinum	0.00042	0.076	0.246	
Vibrio	0.038	0.203	1.7	
E. coli 0157:H7	1.3	4.6	4.3	
Campylobacter	<u>14.2</u>	<u>17.3</u>	5.7	
Listeria monocytogenes	0.018	3.8	<u>27.5</u>	
Salmonella	<u>9.7</u>	<u>25.7</u>	<u>30.4</u>	

Operational perspective on hazards



Evolution of food safety management

What is Food Safety Management?

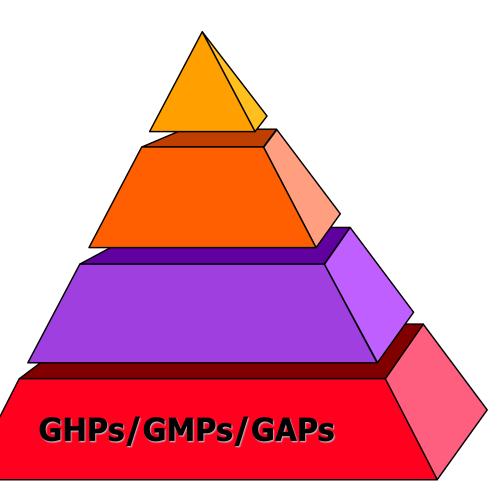
- Ensuring consumer protection
- A joined responsibility with complementary accountabilities
 - Government: "controlling" food safety by defining food safety regulations & standards
 - Industry: "managing" safe food delivery day-by-day
 - **Consumers**: keeping safe food safe
 - Academia: developing science underpinning food safety

Food Safety Control & Foods Safety Management

Food Safety Control:

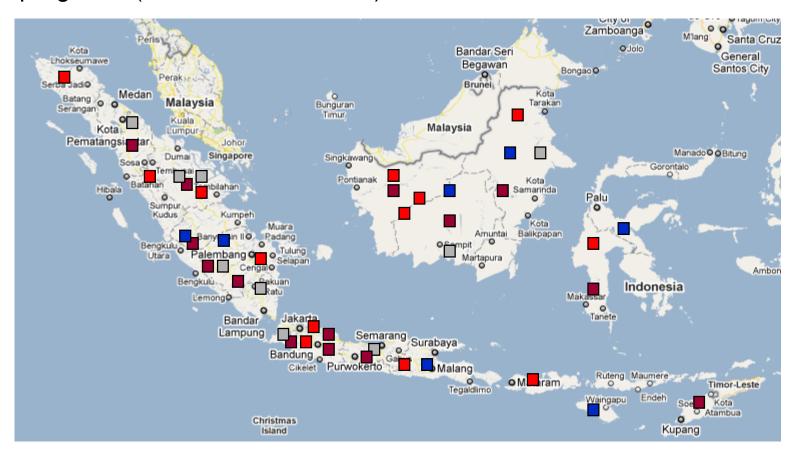
- High level, generic
- Policy-based guidance
- Specific standards, criteria

Food Safety Management:

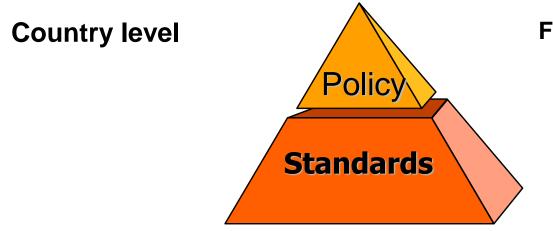

Local, specific management at supply chain level

INCLUDES ALL HAZARDS

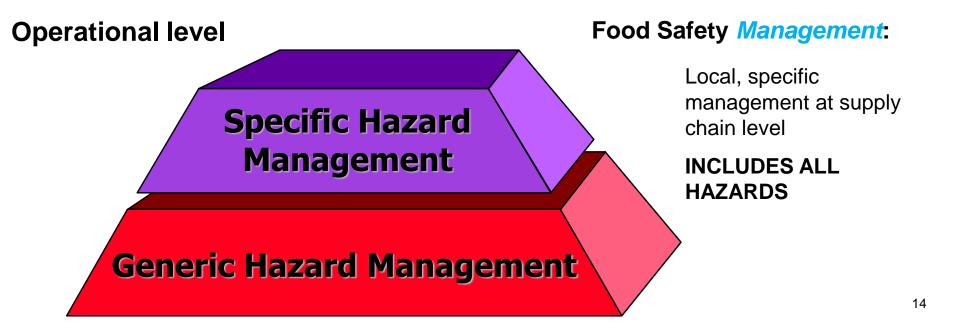
Generic Hazard Management


"Good Practices"

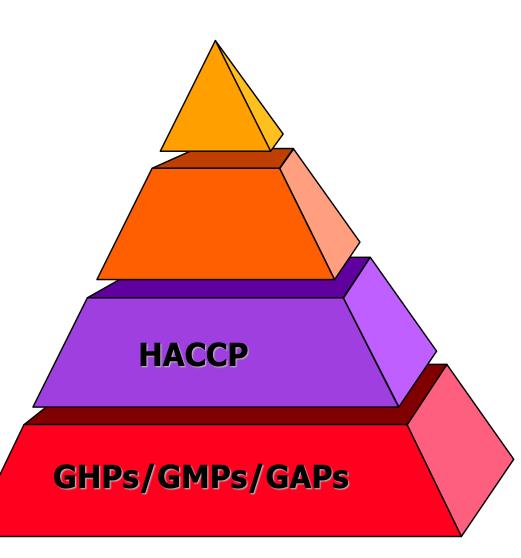
- The foundation of all food safety management systems are Good
 Practices (Good *Manufacturing* Practices, Good *Hygiene* Practices;
 Good *Agricultural* Practices)
- They provide general, generic
 guidance on sanitary practices and on
 the level of care expected of facilities
 handling or manufacturing foods


"Good Practices" are generic

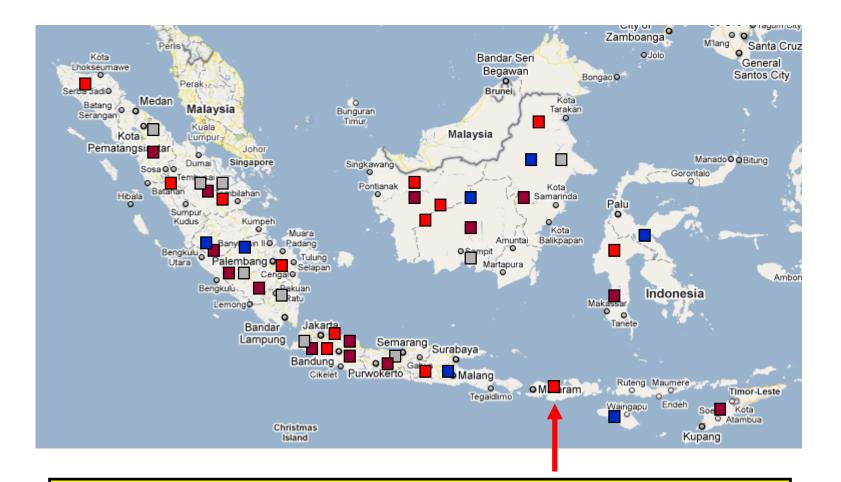
Different types of food operations may have similar/same good practice programs (GAPs, GHPs, GMPs)


Good practices have helped improve food safety management, but still foodborne disease outbreaks may occur due to lack of specific, critical controls

Food Safety Control & Foods Safety Management


Food Safety Control:

- High level, generic
- Policy-based guidance
- Specific standards, criteria



HACCP

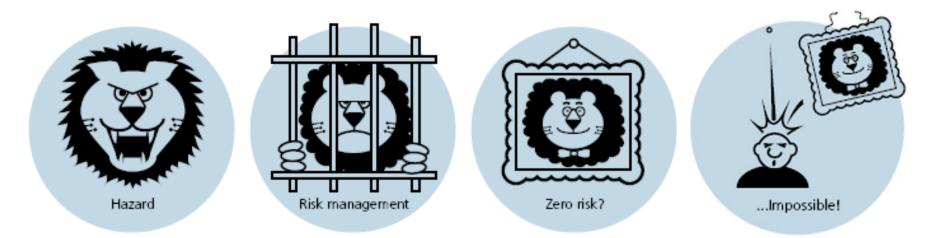
- Hazard Analysis Critical Control Point (HACCP)
- Augments Good Practices with a more systematic, targeted approach to focus control efforts specifically on critical control measures
- HACCP systematically evaluates all possible hazards for a specific operation and establishes the necessary controls for significant hazards
- Control measures at critical points are duly monitored to verify ongoing control during operation

HACCP is very specific

HACCP concerns a specific product, manufactured on a specific location & production-line & food product-batch

Food safety management - stringency

- Stringency (i.e., required level of hazard control) is often not defined in today's regulations and standards
- Sometimes, Governments give explicit guidance on stringency by setting quantitative limits to certain hazards
- Stringency is otherwise a result of the (technical) ability of a food business operator to manage their operation


So are foods then always safe?

- Food safety will depend on:
 - Whether there is any form of management
 - Whether management is by best practices only
 - Whether additionally HACCP is implemented
 - Whether there is quantitative governmental guidance on the "stringency" required for control of specific hazards in foods, e.g.
 - Limits for hazards or microbiological criteria
 - Performance standards for processing

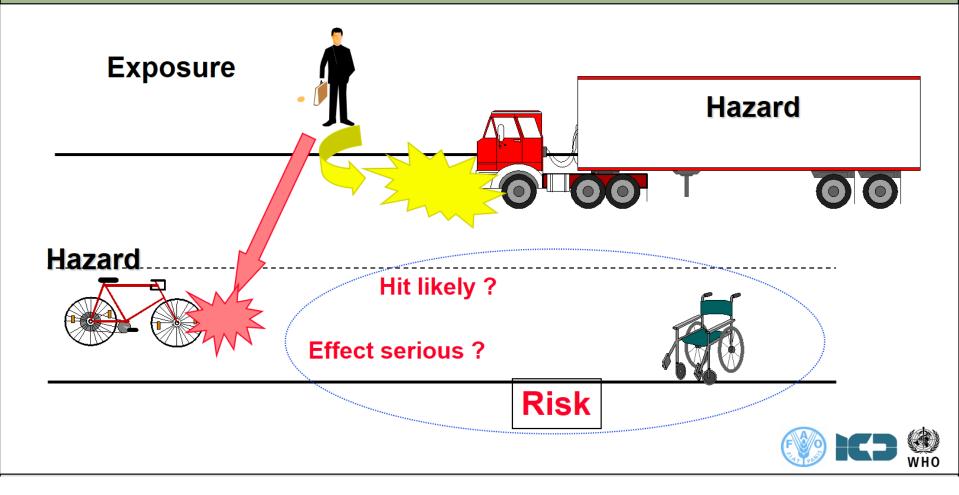
Modern food safety management?

- Provides <u>risk-based guidance</u> to industry:
 - Explicitly defines stringency of hazard control based on the risk that the hazard poses to consumers
 - Drives for management that is *proportional* to the **risk**

Hazard & Risk

The difference between RISK and HAZARD (no animals were harmed in the making of this cartoon).

Modern food safety management?


- Provides <u>risk-based guidance</u> to industry:
 - Defines stringency of hazard control based on the risk that the hazard poses to consumers
 - Drives for management that is *proportional* to the **risk**
 - Moves away from "zero risk" as the ideal as this is not necessarily realistic or needed
 - Recognizes that hazards may not always pose a **risk** that is *unacceptable*

Risk-based food safety management

Terminology: Hazard & Risk (microbiology)

- Hazard: An agent causing an adverse effect (microbe, toxin)
- **Exposure:** Estimate of the hazard level in the food consumed
- Severity: Extent of adverse health effect on the consumer caused by the hazard
- **Risk:** A combination of <u>exposure</u> and <u>severity</u>
- **Probability:** a feature of all aspects above, e.g.
 - Probability of the hazard actually being present in a food
 - Probability of the consumer eating that contaminated food
 - Probability of the consumer being sensitive to the adverse health effect of the hazard

Risk and hazard

Not every hazard necessarily poses a risk

- Without exposure there is no risk
- <u>Potential</u> hazard presence does not equate to <u>actual</u> presence
- Hazards vary in severity
- Consumers vary in susceptibility
- Low levels of a hazard may not be unsafe for specific consumers
- Capable industries can manage hazards to a defined "acceptable level of risk"

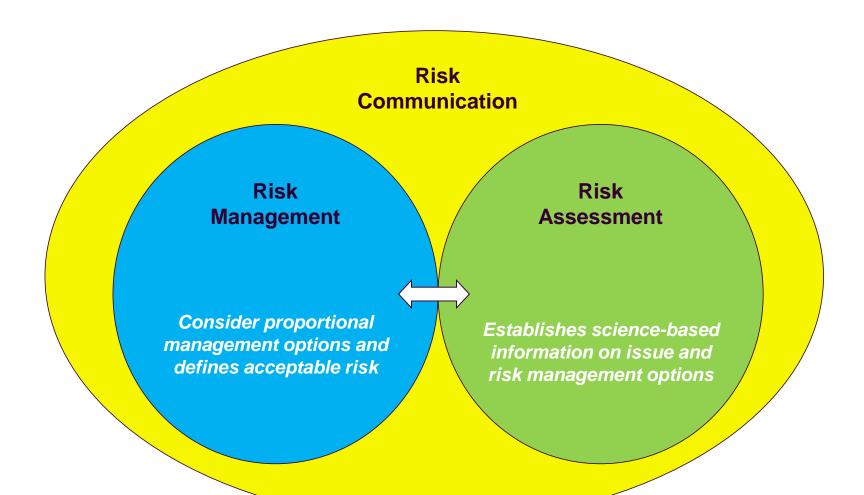
- Sound science can inform on these aspects
- **Risk Assessment** is the best practice approach to assemble the science
- **Risk Management** is the best approach for decision making

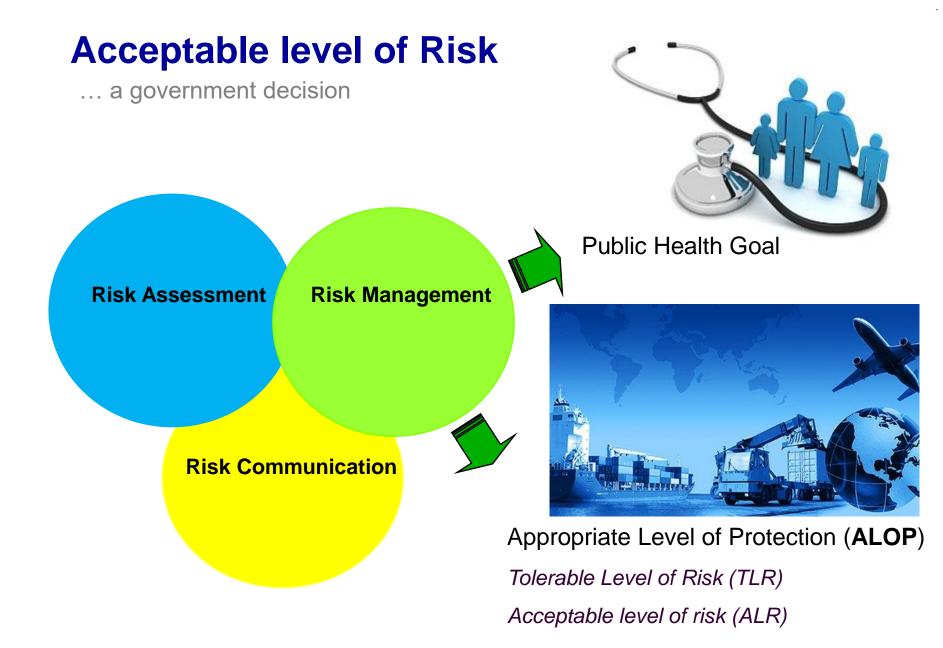
Risk Analysis Framework

What is acceptable risk ?

Copyright 1995 Daniel J. Robinson

Levels of "Risk"

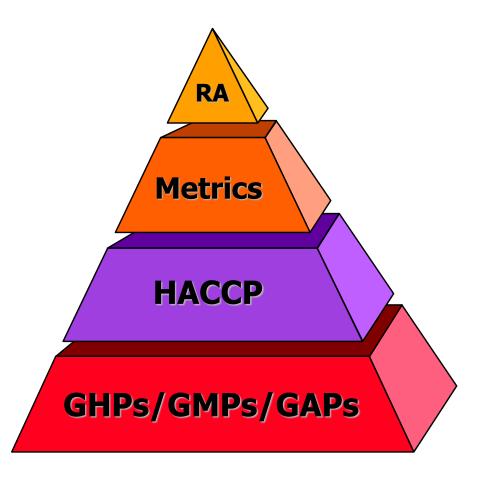

Term used	Risk range	Example	Risk estimate
HIGH	1:100	(A) Transmission to susceptible household contacts of measles and chickenpox	1:2
		(A) Transmission of HIV from mother to child	1:6
		(A) Gastrointestinal effects of antibiotics	1:10-1:20
MODERATE	1:100-1:1000	(D) Smoking 10 cigarettes a day	1:200
		(D)All natural cause, age 40	1:850
LOW	1:1000-1:10.000	(D) All kind of violence and poisoning	1:3300
		(D) Influenza	1:5 000
		(D) Accident on road	1:8 000
VERYLOW	1:10.000-1:100.000	(D) Leukaemia	1:12 000
		(D) Playing soccer	1:25 000
		(D) Accident at home	1:26 000
		(D) Accident at work	1:43 000
		(D) Homicide	1:100 000
MINIMAL	1:100.000-1:1.000.000) (D) Accident on railway	1:500 000
		(A) Vaccination associated polio	1:1 000 000
NEGLIGIBLE	1:10.000.000	(D) Hit by lightning	1:10 000 000
		(D) Release of radiation by nuclear power Station	1:10 000 000

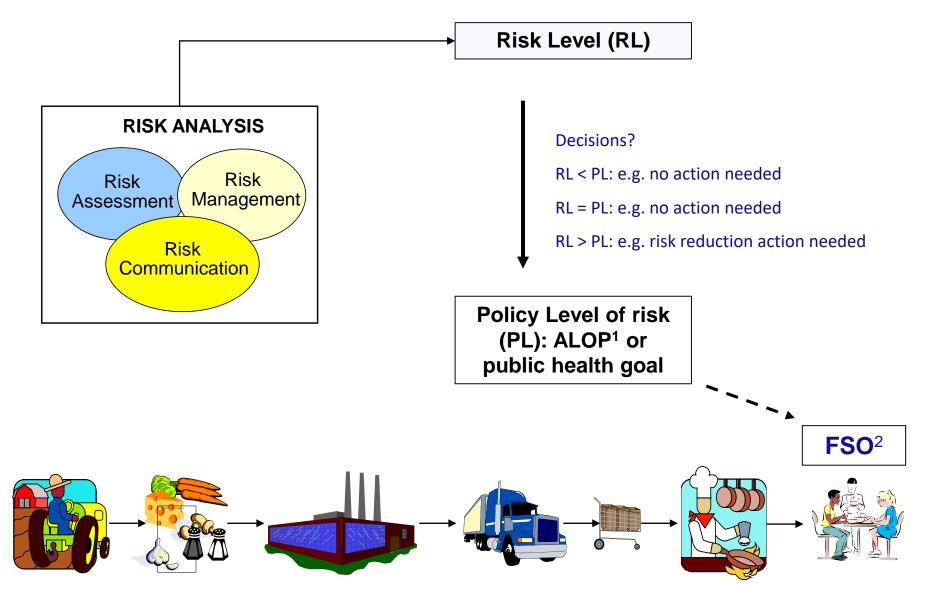

1: Risk of an individual dying (D) in any one year or developing an adverse response (A)

KC Calman, 1996

Risk Analysis Framework

... the latest step in the evolution of food safety management




Risk Analysis Framework

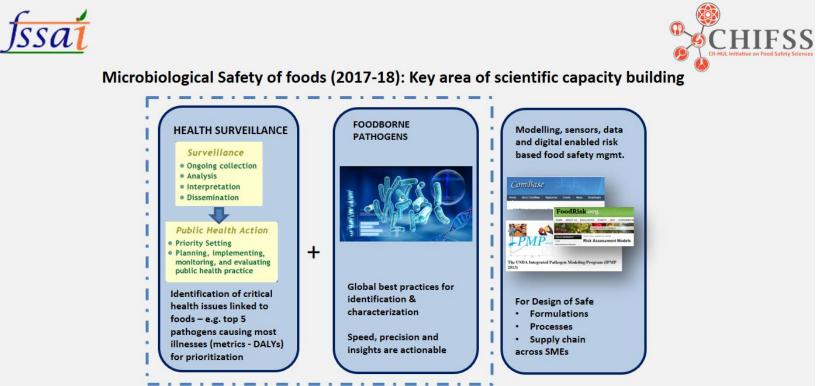
... Modern way to decide on Effective food safety management

- Risk Analysis (RA)
- Triggered by World Trade Organisation (WTO)
- Advocated by many governments and inter-governmental organisations (FAO, WHO, Codex)
- Risk Analysis may be used to define *risk-based metrics* that provide explicit, quantitative guidance (ALOP, FSO, POs, MCs)

Risk-based metric – example FSO

1: ALOP, Appropriate Level Of Protection; 2: Food Safety Objective

How do governments use Risk Analysis?


- To develop an estimate of the risk to human health and safety
- To prioritize between risks that require mitigation
- To identify appropriate measures to mitigate a risk, *e.g.* to:
 - identify the various points of control along the food chain at which measures could be applied
 - weigh up the respective costs and benefits
 - determine the most effective one(s)
- To communicate with stakeholders about risks and mitigation options

Risk Analysis benefits?

- *Stringency* of required hazard control is:
 - "articulated", i.e. quantified
 - "proportional", i.e. based on risk posed by the hazard
 - "science-based", i.e. objectively defendable
 - in-line with policies on public health protection
 - providing a measure for equivalence of product safety

Risk Analysis Pre-requisites

- Data on pathogens & foods (surveillance; incident investigation; epidemiology) government
- Quantitative methods/approaches for data handling/processing (e.g. Predictive modelling, Risk Assessment; etc)

Questions?

LEON.GORRIS@UNILEVER.COM