Manual of Methods of Analysis of Foods-Water

Table of Content

Sl. No	Method No.	Particulars		
1.	FSSAI 14.001:2024	Determination of Colour– Platinum cobalt (visual comparison) method	1-2	
2.	FSSAI 14.002:2024	Determination of Colour – Spectrophotometric Method	3-7	
3.	FSSAI 14.003:2024	Determination of Odour	8-9	
4.	FSSAI 14.004:2024	Determination of pH by Electrometric Method	10-13	
5.	FSSAI 14.005:2024	Determination of pH by Colorimetric method	14-17	
6.	FSSAI 14.006:2024	Determination of Taste by Flavor Rating Assessment Test	18-20	
7.	FSSAI 14.007:2024	Determination of Turbidity by Nephelometric Method	21-23	
8.	FSSAI 14.008:2024	Determination of Total dissolved solids by Gravimetric method	24-25	
9.	FSSAI 14.009:2024	Determination of TDS based on conductivity	26-29	
10.	FSSAI 14.010:2024	Determination of Anionic Surfactants As MBAS	30-33	
11.	FSSAI 14.011:2024	Determination of Anionic Surface Active Agents	34-37	
12.	FSSAI 14.012:2024	Determination of Boron by Azomethine Method	38-41	
13.	FSSAI 14.013:2024	Determination of Boron by Carmine Method	42-43	
14.	FSSAI 14.014:2024	Determination of boron by Curcumin method	44-46	
15.	FSSAI 14.015:2024	Determination of Nitrate by Cadmium Reduction	47-49	
16.	FSSAI 14.016:2024	Determination of Nitrate by Chromotropic Acid Method	50-51	
17.	FSSAI 14.017:2024	Determination of Nitrate by Devarda's Alloy Reduction Method	52-54	
18.	FSSAI 14.018:2024	Determination of Chloride in water by Argentometric Method	55-57	
19.	FSSAI 14.019:2024	Determination of Chloride by Potentiometric Method	58-60	
20.	FSSAI 14.020:2024	Determination of Chloride by Automated Ferricyanide Method	61-62	
21.	FSSAI 14.021:2024	Determination of Chloride by Mercuric Thiocyanate Flow Injection Analysis method	63-64	
22.	FSSAI 14.022:2024	Determination of Magnesium by Calculation Method & Gravimetric Method	65-68	
23.	FSSAI 14.023:2024	Determination of Fluoride by SPANDS Method	69-71	
24.	FSSAI 14.024:2024	Determination of Fluoride by Zirconium alizarin method with and without distillation	72-75	

25.	FSSAI 14.025:2024	Determination of Fluoride by electrochemical probe 76-8 method			
26.	FSSAI 14.026:2024	Determination of Total Hardness	81-84		
27.	FSSAI 14.027:2024	AI 14.027:2024 Determination of Alkalinity in Water By Titrimetric Procedure			
28.	FSSAI 14.028:2024	Determination of Sulphates by turbidity method	87-88		
29.	FSSAI 14.029:2024	Determination of Sulphates by gravimetric method	89-91		
30.	FSSAI 14.030:2024	Determination of Sulphate by Thorin method	92-93		
31.	FSSAI 14.031:2024	Determination of Sulphide By Iodometric Method	94-97		
32.	FSSAI 14.032:2024	Determination of Sulphide By Ion Selective Electrode	98-101		
33.	FSSAI 14.033:2024	Determination of Cyanide by colorimetric method	102-107		
34.	FSSAI 14.034:2024	Determination of Cyanide by Selective Electrode Method	108-109		
35.	FSSAI 14.035:2024	Determination of Calcium by EDTA Titrimetric Method	110-113		
36.	FSSAI 14.036:2024	Determination of Calcium by Permanganate Titration Method	114-116		
37.	FSSAI 14.037:2024	Determination of Phenol	117-120		
38.	FSSAI 14.038:2024	Determination of Sodium	121-122		
39.	FSSAI 14.039:2024	Determination of Hexavalent Chromium	123-125		
40.	FSSAI 14.040:2024	Determination of Total Solids	126-127		
41.	FSSAI 14.041:2024	Determination of Nitrite	128-130		
42.	FSSAI 14.042:2024	Determination of Mineral oil	131-132		
43.	FSSAI 14.043:2024	Determination of Anions By Ion Chromatography	133-135		
44.	FSSAI 14.044:2024	Determination of Metals By AAS (Flame method)	136-139		
45.	FSSAI 14.045:2024	Determination of Aluminum, Antimony , Arsenic, Barium, Beryllium ,Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Manganese, Molybdenum , Nickel , Selenium , Silver & Tin in Water By Electro thermal Atomic Absorption Spectroscopy	140-143		
46.	FSSAI 14.046:2024	Determination of Mercury By Cold-Vapor Atomic Absorption Spectrometric Method	144-146		
47.	FSSAI 14.047:2024	Determination of Metals in Water By Inductively Coupled Plasma-Mass Spectrometry	147-152		
48.	FSSAI 14.048:2024	Determination of Gross Beta Activity Measurement	153-156		

VUP UNITARY AND AND AND AND AND AND AND AND AND AND	Determination of Colour – Platinum cobalt (visual comparison) method			
Method No.	FSSAI 14.001:2024	Revision No. & Date	0.0	
Scope	This method is applicabl Mineral water Packaged drinkin Drinking Water (e to: ng water (Purified)		
Caution	Even a slight turbidity causes the apparent colour to be noticeably higher than the true colour; therefore, remove turbidity by the filtration procedure described in Sample Preparation. The colour value of water is extremely pH-dependent and invariably increases as the pH of the water is raised. When reporting a colour value, specify the pH at which colour is determined.			
Principle	Colour is determined by visual comparison of the sample with known concentrations of coloured solutions, The platinum-cobalt method of measuring colour is the standard method, one unit/Hazen of colour being that produced by 1 mg/L platinum in the form of the chloroplatinate ion.			
Apparatus/Instruments	 Nessler cylinders 50 mL capacity. pH meter Filter and filter assembly with vacuum system (for true colour measurements): Use a 0.45 μm pore diam cellulose membrane filter of 22 or 47 mm diameter. Glass fiber filters also can be used. Rinse filters before use and monitor filter blanks. Smaller-pore filters of 0.2 or 0.22 μm or even ultrafiltration may be needed to remove colloidal particles for certain samples such as Mn or Fe oxides or other colloids. Use a glass, PTFE, or stainless-steel assembly to hold the selected filters. 			
Materials and Reagents	 Organic-free water: Type I reagent water or equivalent water Potassium chloroplatinate (K₂PtCl₆), analytical grade Potassium chloroplatinate (K₂PtCl₆), analytical grade Cobaltous chloride (CoCl2 -6H2O), analytical grade Hydrochloric acid (HCl), analytical grade 			
Preparation of Reagents	Dissolve 1.246 gm po cobaltous chloride in hydrochloric acid. Dilut solution is equivalent to Prepare standards havi diluting 1.0, 2.0, 3.0, 4 standard with reagent	otassium chloroplatinate and distilled water containing te to 1000mL with distilled 500 colour units (CU). ng CU of 5, 10, 15, 20, 25, 3 c.0, 5.0, 6.0, 8.0, 10.0, and water in 100 mL volumet	ad 1.0 gm crystalline 100 mL concentrated water. This standard 80, 40, 50, and 100 by 20.0 mL stock colour ric flasks. Transfer to	

	Nessler tubes for use as standards. Protect standards against evaporation and contamination when not in use. Keep in the dark when not in use and keep only for 1 month.				
	Represent determine activity or Refrigerat warm the	ative sam d as early physical ion of wa m up to ro	pples shall be taken in y as possible after the changes occurring du ater samples at 4°C is pom temperature befor	clean glassware. Colour collection of samples as ring storage may affect t recommended until ana re measurement.	should be biological he colour. lysis, and
Sample Preparation	Check sam pH 7 and r	ple pH. If tote the a	f outside the range of 4 djustment.	to 10, preferably adjust	sample to
	Filtration and filter Filter abo about 50 r	Filtration Method: If true colour is to be measured, wash membrane filter and filter assembly by passing at least 50 mL reagent water through filter. Filter about 25 mL sample and discard filtrate. Filter a further portion of about 50 mL through the same filter and retain for analysis.			
Method of analysis	Observe sample colour by filling a matched Nessler tube to the 50 mL mark with sample and comparing it with standards. Look vertically downward through tubes toward a white or specular surface placed at such an angle that light is reflected upward through the columns of liquid. If turbidity is present and has not been removed, report as "apparent colour." If the colour exceeds 100 units, dilute the sample in known proportions until the colour is within the range of the standards.				
	Calculate o	colour uni	its (CU) by the followir	ng equation:	
	Colour Un	its = $\frac{A}{-}$	x 50 B		
A = estimated colour B = mL sample taker		ed colour of a diluted sample, and ple taken for dilution.			
Calculation with units of expression	The correct units for true colour are CU. One CU is equivalent to one Hazen unit and to one Pt-Co unit. If samples are not filtered, report data as Apparent CU. Report colour results in whole numbers and record as follows:				
		SL.NO.	Colour units	Record to Nearest	
		1	1-50	1	
		2	51-100	5	
		3	101-250	10	
	4 251-500 20				
Reference	APHA (24	th edition)	2120 B		
Approved by	Scientific Panel on Methods of Sampling and Analysis				

एफएसएसएआइ	Determination of Colour – Spectrophotometric Method				
Method No.	FSSAI 14.002:2024	Revision No. & Date	0.0		
Scope	This method is applicabl Mineral water Packaged drinkin Drinking Water (e to: ng water [Purified]			
Caution	The primary interference is from the presence of colloidal and suspended particles that absorb or scatter light. Remove turbidity, colloidal and suspended particles by filtration procedure described in Sample Preparation.				
Principle	Colour characteristics are measured at pH 7 and original pH of the sample by obtaining the visible absorption spectrum of the sample on a spectrophotometer. The percent transmission at certain wavelengths is used to calculate the results which are expressed in terms of dominant wavelength, hue, luminance, and purity.				
Apparatus/Instruments	 Spectrophotometer, having absorption cells of a minimum of 10 mm, a narrow (10 nm or less) spectral band, and an effective operating range from 400 to 700 nm. pH meter Filter and filter assembly with vacuum system (for true color measurements): Use a 0.45 μm pore diam cellulose membrane filter of 22 or 47 mm diameter. Glass fiber filters also can be used. Rinse filters before use and monitor filter blanks. Smaller-pore filters of 0.2 or 0.22 μm or even ultrafiltration may be needed to remove colloidal particles for certain samples such as Mn or Fe oxides or other colloids. Use a glass, PTFE, or stainless-steel assembly to hold the selected filters. 				
Materials and Reagents	Organic-free water: Type I reagent water or equivalent water				
Preparation of Reagents	NA				
Sample Preparation	Representative samples shall be taken in clean glassware. Color should be determined as early as possible after the collection of samples as biological activity or physical changes occurring during storage may affect the colour. Refrigeration of water samples at 4°C is recommended until analysis, and warm them up to room temperature before measurement. Bring two 50 mL samples to room temperature. Use one sample at the original pH; adjust pH of other to 7.0 by using sulfuric acid (H ₂ SO ₄) and sodium hydroxide (NaOH) of such concentrations that the resulting volume				

	change does not exceed 3%. A standard pH is necessary because of the				of the	
	variation of color with pH. Remove particulate matter from samples before color determination by filtration method: Wash membrane filter and filter assembly by passing at least 50 mL reagent water through filter. Filter about 25 mL sample and discard filtrate. Filter a further portion of about 50 mL through the same filter and retain for analysis.					
	Determ Thorou and fill	ination of light ghly clean 10 m cell with filtere	transmission ch 1m absorption o d sample.	<u>naracteristics:</u> cells. Rinse twic	e with filtered sa	ample,
	Determine transmittance values (in percent) at each visible wavelength value presented in <u>Table 1</u> , using the 10 ordinates delineated by the border- boxes for fairly accurate work and all 30 ordinates for increased accuracy. Set instrument to read 100% transmittance on the distilled water blank and make all determinations with a narrow spectral band.					
		Ordinate	V	Vavelength (nm	l)	
		No.	Х	Y	Z	
		1	424.4	465.9	414.1	
		2	435.5*	489.5*	422.2	
		3	443.9	500.4	426.3	
		4	452.1	508.7	429.4	
Method of analysis		5	461.2*	515.2*	432.0	
		6	474.0	520.6	434.3	
		7	531.2	525.4	436.5	
		8	544.3*	529.8*	438.6	
		9	552.4	533.9	440.6	
		10	558.7	537.7	442.5	
		11	564.1*	541.4*	444.4	
		12	568.9	544.9	446.3	
		13	573.2	548.4	448.2	
		14	577.4*	551.8*	450.1	
		15	581.3	555.1	452.1	
		16	585.0	558.5	454.0	
		17	588.7*	561.9*	455.9	
		18	592.4	565.3	457.9	
		19	596.0	568.9	459.9	
		20	599.6*	572.5*	462.0	

		21	603.3	576.4	464.1	
		22	607.0	580.4	466.3	
		23	610.9*	584.8*	468.7	
		24	615.0	589.6	471.4	
		25	619.4	594.8	474.3	
		26	624.2*	600.8*	477.7	
		27	629.8	607.7	481.8	
		28	636.6	616.1	487.2	
		29	645.9*	627.3*	495.2	
		30	663.0	647.4	511.2	
		I	Factors when 3() ordinates use	ł	
		0.032	69 0.033	33 0.039	<u>-</u> 38	
		I	Factors when 10) ordinates used	d	
		0.098	06 0.100	00 0.118	14	
	*1	in and address)	- 4- 41
	*Insert wavele	ngth shown. W	n the transmitt here limited a	curacy is suffi	cient. use only	g to the 10
	ordinat	es delineated by	y the border-bo	xes.		
	Tabulat	o transmittan	o valuos corre	coording to 1	vavalangths sh	own in
	Columns X, Y, and Z in Table: I. Sum each transmittance column and multiply the totals by the appropriate factors (for 10 or 30 ordinates) shown at the bottom of the table, to obtain tristimulus values X, Y, and Z. The tristimulus value Y is percent luminance.					nultiply n at the timulus
	Calculate the trichromatic coefficients x and y from the tristimulus values X, Y, and Z by the following equations:					alues X,
				х		
			$x = \frac{1}{x}$	X+Y+Z		
Calculation with units of			ı <i>.</i> – –	Y		
expression			$y - \frac{1}{X}$	(+Y+Z		
	Locate determ percent waveler	point (<i>x, y</i>) on ine the domina c) directly from ngth value, acco	one of the ch ant wavelength the diagram. D ording to the rar	romaticity diag (in nanomete etermine the h nges in <u>Table:2</u> .	grams in <u>Figur</u> rs) and the pu ue from the do	<u>e:1</u> and Irity (in minant-
	Expression of Results:					
	Report color characteristics (at pH 7.0 and at the original pH) in te dominant wavelength (nanometers, to the nearest unit), hue (e.g. blue-green, etc.), luminance (percent, to the nearest tenth), and (percent, to the nearest unit). Report type of instrument spectrophotometer), number of selected ordinates (10 or 30), an					erms of g., blue, l purity nt (i.e., and the

	530-575	Greenish yellow	
	575-580	Yellow	
	580-587	Yellowish orange	
	587-598	Orange	
	598-620	Orange red	
	620-700	Red	
	400-530c#	Blue purple	
	530c-700#	Red Purple	
	 #The blue-purple and red-purple hues occury y) in <u>Figure: 1</u> results in the dominant waveled lower right scale having the "c" labeling after t 	when the location of point (x ength being obtained from the he wavelength values.	
Reference	APHA (24 th edition) 2120 D		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

UNDERFORMED WITCHING AND	Determination of Odour				
Method No.	FSSAI 14.003:2024	Revision No. & Date	0.0		
Scope	This method can be used various points in the wa	to evaluate samples from dr er treatment train, and finisl	rinking water sources, hed drinking water.		
Caution	Do not use this method f suspected to contain haz contaminants.	or industrial or domestic was ardous levels of chemical or	stes or other samples biological		
Principle	Odour is recognized as a quality factor affecting acceptability of drinking water and food prepared from it, tainting of fish and other aquatic organisms & aesthetes of recreational waters. Most organic and some inorganic chemicals contribute taste or odour. These chemicals may originate from municipal and industrial waste discharges, natural sources, such as decomposition of vegetable matter or from associated microbial activity. Odour of water, though very important, cannot be determined in absolute units. Olfactory sense, which is the most sensitive means of detecting small concentrations of odoriferous substances, lacks precision and mathematical expression nevertheless a qualitative test is prescribed. In case of doubt as to the intensity or character of odour, a majority opinion of several				
Apparatus/Instruments	 a. Sample and stand b. Odor-free testing c. Water bath 	dard bottles room			
Materials and Reagents	 a. Sample and stan PTFE-lined closu b. Odor-free testing odor-free room v c. Water bath: Cap within 30 min. 	dard bottles: 1-L narrow-m re. (Note: 500-mL bottles can g room: TIO sessions should vith minimal distractions. pable of bringing samples t	outh amber glass, with n also be used.) l take place in a clean, to testing temperature		
Preparation of Reagents	Thoroughly clean the requisite number of wide mouth glass stoppered bottles of about one-liter capacity. Rinse them with hydrochloric acid and render them completely odour-free by repeated washing with odour-less distilled water, which can be prepared by passing distilled water through a column of granulated activated carbon.				
Sample Preparation Method of analysis	 column of granulated activated carbon. a. As soon as possible after collection of sample, fill a cleaned bottle half full of sample, insert the stopper, shake vigorously for 2 to 3 seconds and then quickly observe the odour. The sample taken for observation of odour shall be at a room temperature. b. When it is desired to record the odour at an elevated temperature, make the observation after warming the sample to about 60°C in a clean stoppered bottle. Working independently, each papelist gently shakes their sample 				

	bottle, removes the cap, and sniffs the headspace. They then each		
	assign the sample a TIO based on their familiarity with the intensity		
	scale.		
	• If evaluating additional samples, panelists then sniff odor-free water		
	and rest for \geq 1 min between samples.		
	• Recording and discussion: One panel member compiles all results		
	on one sheet. If the difference in individual TIO values is >2 for any		
	sample (e.g., one panelist reports TIO of 2, and another reports TIO		
	of 6), then the panel discusses the sample and may retest, again		
	using the reference standards for calibration, so a closer consensus		
	may be obtained.		
Calculation with units of	Report the true odour of the sample at the mouth of the bottle as rotten egg,		
expression	burnt, sugar, soapy, fishy, septic, aromatic, chlorinous, alcoholic odour or		
	any other specific odour. In case it is not possible to specify the exact odour,		
	report as agreeable or disagreeable.		
Inference	After individual results are discussed and recorded, the panel reaches a		
(Qualitative Analysis)	consensus via discussion and reports it.		
Reference	IS:3025 (part 5) : 1983 (Reaffirmed 2002) - Methods of Sampling and Test		
	(Physical and chemical) for water and Waste Water : Odour		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

UUDE CALL AND AND AND AND AND AND AND AND AND AND	Determination of pH by Electrometric Method			
Method No.	FSSAI 14.004:2024	Revision No. & Date	0.0	
Scope	This method is applicabl Mineral water Packaged drinkin Drinking Water (e to: ng water [Purified]	I	
Caution	 At pH value above 10, high sodium concentrations interfere with the measurement. Correction for the sodium error may be made by consulting the chart supplied by the manufactures of electrodes being used. Sodium errors at pH value levels greater than 10 can be reduced or eliminated by using a low sodium error electrode. Oil and grease may interfere by coating the pH electrode and causing a sluggish response. These coatings can usually be removed by gentle wiping or detergent washing, followed by distilled water rinsing. An additional treatment with hydrochloric acid (1%) may be necessary to remove any remaining film. Temperature affects the pH values in two ways. The first is covered by the change in electrode output at various temperatures. This interference can be controlled with instruments having temperature compensation or by calibrating the electrode instrument system at the temperature of the samples. The second source is the change of pH inherent in the sample at various temperatures. This error is sample dependent and cannot be controlled. Therefore, the temperature at the time of analysis should be 			
Principle	The pH value is determined cell consisting of an indi- a reference electrode. C electrode is usually achie- of the reference electron- meter i.e. a high impedan Several types of determination of pH recognized as primary calomel electrode is gen- saturated calomel electro- that a change of 1 pH un The active element of g membrane forms a part concentration and a po membrane which is pr liquids.	ned by measurement of the e cator electrode immersed im- ontact between the test solu- eved by means of a liquid jun- de. The electromotive force- nce voltmeter calibrated in te- relectrodes have been sugge value. Although the hydro standard, the glass electrod nerally used with reference ode. The glass electrode syst it produces an electrical cham- lass electrode is membrane ition between two liquids of tential is produced between coportional to the difference	electromotive force of a to the test solution and ation and the reference action which forms part is measured with a pH erms of pH. ested for electrometric ogen gas electrode is e in combination with potential provided by tem is based on the fact age of 59.1 mV at 25°C. of a special glass. The differing hydrogen ion in the two sides of the te in pH between the	
Apparatus/Instruments	a. pH Meter with preferably with t	glass and reference electroo emperature compensation.	de (saturated calomel)	

	b. Magnetic stirrer with polytetrafluoroethylene coated stirring bar.		
	c. Thermometer with least count of 0.5°C.		
Materials and Reagents	1. Borax buffer		
	2. Phosphate buffer		
	3. Tartrate buffer		
	4. Phthalate buffer		
	5. Tetraoxalate buffer		
	6. Calcium Hydroxide Buffer		
Preparation of Reagents	Standard pH buffer solutions be prepared using commercially available		
	tablets or powder with NIST traceability or known amount of chemicals.		
	Procedures for the preparation of some standard pH buffer solutions are		
	iven below and Table 1 shows the pH value of these buffers at different		
	temperatures.		
	1. Borax buffer - 0.01 M solution, pH 9.18 at 25°C: Dissolve 3.814 gm		
	borax (Na2B407.10H2O) in deionized or distilled water and dilute		
	to 1 lt. Fresh borax may be used or it may be recrystallized, but, it		
	should not be over dried. For preparation of dilution water, freshly		
	boil and cool deionized or distilled water to expel carbon dioxide		
	gas. Specific conductance of dilution water should be less than 2 μ S at 25% and pH value 5 (to (0 for propagation of all standard		
	at 25°C and pH value 5.6 to 6.0 for preparation of all standard		
	solutions.		
	2 Phosphate huffer - 1.1 solution nH 6.865 at 25° C. For preparing		
	0.025M notassium dihydrogen phosphate and 0.025 M disodium		
	hydrogen phosphate, dry potassium dihydrogen phosphate and		
	sodium dihydrogen phosphate in an oven at 130°C for 2 hr and cool		
	in a desiccator. Dissolve 3.388 gm potassium dihydrogen phosphate		
	and 3.533gm sodium dihydrogen phosphate in deionized or distilled		
	water and make up to 1 lt.		
	•		
	3. Tartrate buffer – 0.034M solution, pH 3.56 at 25°C: Prepare a		
	saturated solution of potassium hydrogen tartrate in deionized or		
	distilled water.		
	4. Phthalate buffer – 0.05M solution, pH 4.008 at 25°C: Dissolve		
	10.12gm potassium hydrogen phthalate in deionized water and		
	dilute to 1 lt.		
	5. Tetraoxalate buffer- 0.05M solution, pH 1.68 at 25oC: Dissolve		
	12.61 gm potassium tetraoxalate dihydrate in deionized water and		
	dilute to 1 it.		
	6 Coloium Hydrovide Duffor 0.0202Mhttp://www.th.12.45.11.2500		
	o. Calcium nyuroxide Buffer – 0.0203M Solution, pH 12.45 at 25°C:		
	ignite well washed calcium carbonate (LaCU3) of low alkall grade in		
	a plaunum ulsh at 1000°C for 1nr. Hydrate the cooled calcium oxide		

by adding deionized water slowly with stirring and heat to boiling. Filter the cooled suspension and collect the solid calcium hydroxide on fritted glass filter of medium porosity. Dry the collected calcium hydroxide in an oven at 110°C, cool and pulverize to uniformly fine granules. Vigorously shake an excess amount of this product in polyethylene bottle with distilled or demineralized water. Allow the gross excess to settle and filter by suction through a fritted glass funnel. Keep the securely stoppered bottle to prevent ingress of carbon dioxide.

	S. No.	Calciu m Hydro xi de Satura ted (0.020 3 M)	Potass ium Tetra oxlate (0.05 M)	Potass ium Hydro gen Tartar ate (Satur ated) (0.034 M)	Potass ium Hydro gen Phthal ate (0.05 M)	Potass ium Dihyd rogen Phosp hate & Disodi um Hydro gen Phosp hate (0.025 M)	Sodiu m Borat e Decah y drate (Bora xe) (0.01 M)	Calciu m Hydro xide Satura ted (0.020 3M)
	1.	0	1.67	-	4.01	6.98	9.46	13.43
	2.	5	1.67	-	4.01	6.95	9.39	13.21
	3.	10	1.67	-	4.00	6.92	9.33	13.00
	4.	15	1.67	-	4.00	6.90	9.27	12.31
	5.	20	1.67	-	4.00	6.88	9.23	12.63
	6.	25	1.68	3.56	4.01	6.86	9.18	12.45
	7.	30	1.68	3.55	4.02	6.85	9.14	12.30
	8.	35	1.69	3.55	4.03	6.84	9.10	12.04
	9.	40	1.69	3.55	4.04	6.84	9.07	11.99
	10.	50	1.71	3.55	4.06	6.83	9.01	11.70
	11.	60	1.72	3.56	4.09	6.85	8.96	11.45
Sample Preparation	• Sampl the tir	les should ne of sam	be analyz pling.	zed as soc	on as poss	ible prefe	rably in t	he field at

Table 1: pH value of buffers at different temperatures:

	• High purity waters and waters not at equilibrium with the atmosphere				
	(ground waters or lake waters collected at depth) are subject to changes				
	when exposed to the atmosphere. Therefore, the sample containers				
	should be filled completely and kept sealed prior to analysis.				
Method of analysis	Follow the manufacturer's instructions for operation of pH meter. After				
	required warm-up period, standardize the instrument with a buffer solution				
	of pH near that of the sample and check electrode against at least one				
	additional buffer of different pH value. Measure the temperature of the				
	water and if temperature compensation is available in the instrument adjust				
	it accordingly. Rinse and gently wipe the electrodes with solution. If field				
	measurements are being made, the electrodes may be immersed directly in				
	the sample stream to an adequate depth and moved in a manner to ensure				
	sufficient sample movement across the electrode, the sensing element as				
	indicated by drift free readings (<0.1 pH unit). If necessary, immerse them				
	into the sample beaker or sample stream and stir at a constant rate to				
	provide homogeneity and suspension of solids. Rate of stirring should				
	minimize the air transfer rate at the air-water interface of the sample. Note				
	and record sample pH and temperature. However, if there is a continuous				
	drift, take a second reading with the fresh aliquot of sample without stirring				
	and report it as the pH value.				
Calculation with units of	Report pH to the nearest coefficient or 0.01 unit (if instrument reads up to 2				
expression	decimal places) and temperature to the nearest °C.				
Inference	NA				
(Qualitative Analysis)					
Reference	IS 3025 (part 11) - 1983 (Reaffirmed 2002)- Methods of Sampling and Test				
	(Physical and chemical) for water and Waste Water : pH Value				
Approved by	Scientific Panel on Methods of Sampling and Analysis				

The second secon	Determination of pH by Colorimetric method				
Method No.	FSSAI 1	4.005:2024	Revision	No. & Date	0.0
Scope	This method is applicable to: Mineral water Packaged drinking water Drinking Water 				
Caution	The temperature, some gases and organic materials interfere with the pH- measurement Suspended materials in the sample may cause significant errors (suspension effect).				
Principle	A series o value by v	f indicators and visual comparis	d buffer soluti on.	ons are used for	r determination of pH
Apparatus/Instruments	NA				
Materials and Reagents	Indicators Thymol blue (acid range) Bromophenol blue Bromocresol green Methyl red Bromocresol purple Bromothymol blue Phenol red Cresol red Thymol blue (alkaline range) Thymolphthalein Thymol violet				
Preparation of Reagents	 Indicators – Prepare universal Indicator by dissolving 0.05 gm of methyl orange, 0.15 gm of methyl red, 0.3 gm of bromothymol blue and 0.35 gm of phenolphthalein in one liter of alcohol (66 percent). The color changes are: 				
	pH Color				
	Upto 3			Rec	1
		4		Orange	Red
		6		Yello	ge
		7		Yellowish	ngreen
	8 Greenish Blue				n Blue
	9			Blu	e
			V101 Reddish	et Violet	
	2. Prepare indicator solution as given below:				
	Table 1: F	Preparation of i	ndicator solut	ion:	
	S. No.	Name of Indicator	pH Range	Color Change	Method of Preparation

1.	Thymol blue (acid range)	1.2 to 2.8	Red to yellow	Weigh 0.10 gm, add 10.75 mL of N/50 sodium hydroxide solution and dilute with water to 250 mL
2.	Bromoph enol blue	3.0 to 4.5	Yellow to blue violet	Weigh 0.10 gm, add 7.45 mL of N/50 sodium hydroxide solution and dilute with water to 250 mL
3.	Bromoc esol green	3.8 to 5.4	Yellow to blue	Weigh 0.10 gm, add 7.15 mL of N/50 sodium hydroxide solution and dilute with water to 250 mL
4.	Methyl red	4.2 to 6.3	Red to yellow	Weigh 0.10 gm, add 18.60 mL of N/50 sodium hydroxide solution and dilute with water to 250 mL
5.	Bromocr esol purple	5.2 to 6.8	Yellow to blue violet	Weigh 0.10 gm, add 9.25 mL of N/50 sodium hydroxide solution and dilute with water to 250 mL
6.	Bromoth ymolblue	6.0 to 7.8	Yellow to blue	Weigh 0.10 gm, add 8.00 mL of N/50 sodium hydroxide solution and dilute with waterto 250

				mL
7.	Phenol red	6.8 to 8.4	Yellow tored	Weigh 0.10 gm, add 14.20 mLof N/50 sodium hydroxide solution and dilute with waterto 250 Ml
8.	Cresol red	7.2 to 8.8	Yellow to red	Weigh 0.10 gm, add 13.10 mL of N/50 sodium hydroxide solution and dilute with waterto 250 mL
9.	Thymol blue (alkaline range)	8 to 9.5	Yellow to blue	Weigh 0.10 gm, add 10.75 mLof N/50 sodium hydroxide solution and dilute with waterto 250 mL
10.	Thymolphthal ein	9.3 to 10.5	Colorless to blue	Dissolve 0.10gm in 100mL of rectified spirit [see IS : 323-1959 Specifications forrectified spirit (revised)]
11.	Thymol violet	9.0 to 13.0	Yellow to green to violet	Dissolve 0.10gm of tropaeolin O in 100mL of water. Dissolve 0.04gm of thymolphthal ein in a mixture of 50mL of water.Mix one part of tropaeolin O solution with

	4 parts of thymophthal ein solution.				
Sample Preparation	NA				
Method of analysis	Take 100 mL of the sample in a hard glass tube and determine the				
	approximate pH by using the universal indicators. Repeat using a solution of				
	the indicator (about $1/20$ of the volume of the liquid being tested) which				
	corresponds to the approximate pH found above. Compare the color				
	produced with a series of buffer solutions of known pH each containing the				
	same proportion of the indicators.				
Calculation with units of	Report the pH of that buffer solution which matches with that of the				
expression	sample to the nearest 0.1 unit.				
Inference	NA				
(Qualitative Analysis)					
Reference	IS 3025 (part 11) - 1983 (Reaffirmed 2002)- Methods of Sampling and Test				
	(Physical and chemical) for water and Waste Water : pH Value				
Approved by	Scientific Panel on Methods of Sampling and Analysis				

The set of	Determination of Taste by Flavor Rating Assessment Test				
Method No.	FSSAI 14.006:2024	Revision No. & Date	0.0		
Scope	This procedure has be laboratory research an governing mineral conte	een used with samples front and consumer surveys to a cont in drinking water.	om public sources in recommend standards		
Caution	 Perform flavor tests only on samples known to be potable. Do not use samples that may be contaminated with bacteria, viruses, parasites, or hazardous chemicals, that contain dechlorinating agents such as sodium arsenate or that are derived from an unaesthetic source. Do not perform flavor tests on wastewaters or similar untreated effluents or any other non-potable water. Observe all sanitary and aesthetic precautions with regard to apparatus and containers contacting the sample. Glassware used for sensory testing are not to be used for other analysis. Properly clean and sterilize containers before using them. Conduct analysis in a laboratory free from interfering background odors and, if possible, provide odor-free carbon-filtered air at constant temperature and humidity. 				
Principle	Each Panelist (tester) is presented with a list of 9 statements about the water ranging on a scale from very favorable to very unfavorable. The panelist's task is to select the statement that best expresses his or her opinion. The individual rating is the scale number of the statement selected. The panel rating for a particular sample is an appropriate measure of central tendency of the scale numbers for all testers for that sample.				
Apparatus/Instruments	• 50-mL beaker or ordinary drinking glass for each dilution and reference sample. (Between tests, clean containers in an automatic dishwasher supplied with water at not less than 60 °C.)				
Materials and Reagents	Taste and odour-free water and 2000 mg/L solution of sodium chloride prepared with taste and odour -free water as reference sample				
Preparation of Reagents	NA				
Sample Preparation	• Present samples at a temperature that the testers will find pleasant for drinking water; maintain this temperature throughout testing. A temperature of 15 °C is recommended, but in any case, do not let the test temperature exceed tap water temperatures customary at the time of the test.				
Method of analysis	 a. Panel selection Give prospective orientation session procedures. In the procedure of the procedu	and preparation: ve testers thorough instru- sions followed by question tasting samples, testers wo	uctions and trial or ns and discussion of rk alone. Select panel		

	members on the basis of performance in these trial sessions.		
	• Do not let testers know the composition or source of specific		
	samples		
	 Independently randomize the sample order for each tester 		
	• Independently randomize the sample order for each tester.		
	h. Rating test:		
	 A single rating session may be used to evaluate up to 10 samples 		
	Allow at least 30 min rest between repeated rating sessions		
	 Specify test temperature in reporting results Independently. 		
	randomize the sample order for each tester. Instruct each to		
	complete the following steps:		
	1) Taste about half the sample by taking water into the mouth		
	holding it for several seconds and discharging it without		
	swallowing		
	2) Form an initial judgment on the rating scale		
	3) Make a second tasting in a similar manner.		
	4) Make a final rating and record result on an appropriate data form.		
	5) Rinse mouth with reference water.		
	6) Rest 1 min before repeating Steps 1 through 5 on next sample.		
	c. Characterization:		
	• If a characterization of flavor also is required, conduct a final rating		
	session wherein each tester is asked to describe the flavor of each		
	sample rated.		
	• The value of characterization increases as observers become more		
	experienced with a particular flavor category such as		
	chlorophenolic, grassy, or musty.		
Calculation with units of	Use the following scale for rating. Record ratings as integers ranging from 1		
expression	to 9, with 1 given the highest quality rating. Calculate the mean and		
-	standard deviation of all ratings if the distribution is reasonably		
	symmetrical. Otherwise express the most typical rating of a group as the		
	median or geometric mean of individual ratings.		
	Action tendency scale:		
	1) I would be very happy to accept this water as my everyday drinking		
	water.		
	2) I would be happy to accept this water as my everyday drinking water.		
	3) I am sure that I could accept this water as my everyday drinking water.		
	4) I could accept this water as my everyday drinking water.		
	5) Maybe I could accept this water as my everyday drinking water.		
	6) I don't think I could accept this water as my everyday drinking water.		
	7) I could not accept this water as my everyday drinking water.		
	8) I could never drink this water.		
	9) I can't stand this water in my mouth, and I could never drink it.		
Inference	NA		
(Qualitative Analysis)			
Reference	• APHA 2160		
	• IS 3025 part-8:1984 (Reaffirmed 2002)- Methods of Sampling and Test		

	(Physical and chemical) for water and Waste Water : Taste Rating
Approved by	Scientific Panel on Methods of Sampling and Analysis
hpproved by	Sciencine i uner on Frechous of Sumpling and Intalysis

एफएसएसएआइ SSSCOT Food Latter and Experiment Food Latter and Experiment Autority of Health: and Parnity Welfare	Determination of Turbidity by Nephelometric Method				
Method No.	FSSAI 14.007:2024	Revision No. & Date	0.0		
Scope Caution	 Turbidity can be determined for any water sample that is free of debris and rapidly settling coarse sediment. Dirty glassware and the presence of air bubbles give false results. True color (i.e., water color due to dissolved substances that absorb light) causes measured turbidities to be low. Never handle the sample cells where the instrument's light beam strikes to avoid dirt and fingerprints in the light path. Use either matched pairs of cells or the same cell for both standardization and sample measurement. Sample cells may be coated on the outside with a thin layer of silicone oil to mask minor imperfections and scratches that may contribute to stray light. Use silicone oil with the same refractive index as glass. The cell should appear to be nearly dry with little or no visible oil. 				
	Hydrazine sulfate is a carcinogen. Avoid inhalation, ingestion, and skin contact				
Principle	This method is based or the sample under define	a comparison of the intension of the int	ity of light scattered by		
	a standard reference sus	spension under the same con	iditions. The higher the		
	intensity of scattered lig	ht, the higher the turbidity.			
Apparatus/Instruments	 a. Laboratory or process nephelometer consisting of a light source for illuminating the sample and one or more photoelectric detectors with a readout device to indicate intensity of light scattered at 90° to the path of incident light. Use an instrument designed to minimize stray light reaching the detector in the absence of turbidity and to be free from significant drift after a short warmup period. The sensitivity of the instrument should permit detecting turbidity differences of 0.02 NTU or less in the lowest range in waters having a turbidity of less than 1 NTU. Several ranges may be necessary to obtain both adequate coverage and sufficient sensitivity for low turbidities. b. Sample cells: Use sample cells or tubes of clear, colorless glass or plastic. Keep cells scrupulously clean, both inside and out, by thoroughly washing with laboratory soap inside and out followed by multiple rinses with distilled or deionized water and discard if scratched or etched. Never handle them where the instrument's light beam strikes to avoid dirt and fingerprints in the light path. 				
Materials and Reagents	a. Dilution water b. Stock primary st	andard formazin suspension	:		
	Solution				

	Solution II
	c. Dilute turbidity suspensions
	d. Secondary standards:
Preparation of Reagents	 a. Dilution water: To obtain low-turbidity water for dilutions, nominal value 0.02 NTU, pass laboratory reagent-grade water through a filter with pore size sufficiently small to remove essentially all particles larger than 0.1 μm. Rinse collecting flask at least twice with filtered water and discard the next 200 mL. Some commercial bottled demineralized waters have a low turbidity. These may be used when filtration is impractical or an adequate grade of water is not available to filter in the laboratory.
	 b. Stock primary standard formazin suspension: Solution I - Dissolve 1.0 g hydrazine sulfate in high grade reagent water and dilute to 100 mL in a volumetric. Solution II - Dissolve 10.00 g hexamethylenetetramine in high grade reagent water and dilute to 100 mL in a volumetric flask. In a flask, mix 5.0 mL Solution I and 5.0 mL Solution II. Let it stand for 24 h at 25 ± 3 °C. This results in a 4000-NTU suspension. Transfer the stock suspension to an amber glass or other UV-light-blocking bottle for storage. Make dilutions from this stock suspension. The stock suspension is stable for up to 1 year when properly stored.
	c. Dilute turbidity suspensions : Dilute 4000 NTU primary standard suspension with high-quality dilution water. Prepare immediately before use and discard after use.
	 d. Secondary standards: These are standards that the manufacturer has certified will give instrument calibration results equivalent to the results obtained when the instrument is calibrated with the primary standard. (i.e., user-prepared formazin). Secondary standards provided by the instrument manufacturer (sometimes called permanent standards) may be necessary to standardize some instruments before each reading and in other instruments only as a calibration check to determine when calibration with the primary standard is necessary.
Sample Preparation	NA
Method of analysis	 a. General measurement techniques: Measure turbidity immediately to prevent temperature changes and particle flocculation and sedimentation from changing sample characteristics. Avoid dilution whenever possible. Particles suspended in the original sample may dissolve or otherwise change characteristics when the temperature changes or when the sample is diluted. Remove air or other entrained gases in the sample before

calculation with units of expression Report turbidity manages to be a substruction of the set of the structure of						
combination of these techniques. • Condensation may occur on the outside surface of a sample cell when a cold sample is being measured in a warm, humid environment. This interferes with turbidity measuremat. Remove all moisture from the outside of the sample cell before placing the cell lin the instrument. If fogging recurs, let the sample warm slightly by letting it stand at room temperature or by partially immersing it in a warm water bath for a short time. Make sure samples are again well mixed. a. Nephelometer calibration: Follow the manufacturer's operating instructions. Run at least one standard in each instrument range to be used. Make certain the nephelometer gives stable readings in all sensitivity ranges used. b. Measurement of turbidity: Gently agitate the sample. Wait until air bubbles disappear and pour the sample into a cell. When possible, pour the well-mixed sample into a cell and immerse it in an ultrasonic bath for 1 to 2 s or apply vacuum degassing, causing complete bubble release. Read turbidity monitors: Calibrate continuous turbidity monitors: Calibrate continuous turbidity monitors: Calibrate continuous turbidity monitors for low turbidites by determining the turbidity of the water flowing out of them, using a laboratory model nephelometer, or calibrate the instruments according to the manufacturer's instructions with a formazin primary standard or appropriate secondary standard. Calculation with units of expression Report turbidity readings as follows: Turbidity Range (NTU) Report to the Nearest (NTU) 0-1 0.05 1-1:10 0.1 100:400 10 100:400 10		measurement, by applying a partial vacuum, adding a non-foaming type surfactant, using an ultrasonic bath, applying heat or a				
 Condensation may occur on the outside surface of a sample cell when a cold sample is being measured in a warm, hunid environment. This interferes with turbidity measurement. Remove all moisture from the outside of the sample cell before placing the cell in the instrument If fogging recurs, let the sample warm slightly by letting it stand at room temperature or by partially immersing it in a warm water bath for a short time. Make sure samples are again well mixed. Nephelometer calibration: Follow the manufacturer's operating instructions. Run at least one standard in each instrument range to be used. Make certain the nephelometer gives stable readings in all sensitivity ranges used. Measurement of turbidity: Gently agitate the sample. Wait until air bubbles disappear and pour the sample into a cell and immerse it in an ultrasonic bath for 1 to 2 s or apply vacuum degassing, causing complete bubble release. Read turbidity directly from the instrument display. Calibration of continuous turbidity monitors: Calibrate continuous turbidity monitors for low turbidities by determining the turbidity of the water flowing out of them, using a laboratory model nephelometer, or calibrate the instruments according to the manufacturer's instructions with a formazin primary standard or appropriate secondary standard. Calculation with units of Report turbidity readings as follows: Turbidity Range (NTU) Report turbidity calibrate the instrument succeeding to the manufacturer's instructions with a formazin primary standard or appropriate secondary standard. Calculation with units of Report turbidity readings as follows: Turbidity Range (NTU) Report Report Report Report 		combination of these technic	jues.			
Calculation with units of expression Report turbidity readings as follows: Calculation with units of expression Report turbidity readings as follows: Calculation with units of expression Report turbidity readings as follows: Calculation with units of expression Report turbidity readings as follows: Calculation with units of expression Report turbidity readings as follows: Calculation with units of expression Report turbidity readings as follows: Turbidity Range (NTU) Report turbidity readings as follows: Turbidity Range (NTU) Nephelometer (turbidity units. Inference NA Qualitative Analysis) APHA 2130 B Xopproved bw Scientific Panel on Methods of Sampling and Analysis		• Condensation may occur on the outside surface of a sample cell when a cold sample is being measured in a warm, humid environment This interferes with turbidity measurement Remove				
wein initide. a. Nephelometer calibration: Follow the manufacturer's operating instructions. Run at least one standard in each instrument range to be used. Make certain the nephelometer gives stable readings in all sensitivity ranges used. b. Measurement of turbidity: Gently agitate the sample. Wait until air bubbles disappear and pour the sample into a cell. When possible, pour the well-mixed sample into a cell and immerse it in an ultrasonic bath for 1 to 2 s or apply vacuum degassing, causing complete bubble release. Read turbidity directly from the instrument display. c. Calibration of continuous turbidity monitors: Calibrate continuous turbidity of the water flowing out of them, using a laboratory model nephelometer, or calibrate the instruments according to the manufacturer's instructions with a formazin primary standard or appropriate secondary standard. Calculation with units of expression Report turbidity readings as follows: Turbidity Range (NTU) Report to the Nearest (NTU) 0-1 0.05 1-10 0.1 100-400 1 400-1000 50 Greater than 1000 100 NTU = nephelometric turbidity units. NTU = nephelometric turbidity units. Inference APHA 2130 B Approved by Scientific Panel on Methods of Sampling and Analysis		all moisture from the outside of the sample cell before placing the cell in the instrument. If fogging recurs, let the sample warm slightly by letting it stand at room temperature or by partially immersing it in a warm water bath for a short time. Make sure samples are again				
a. Nepherbineter Cambration: Follow the manufactures to be rading instructions. Run at least one standard in each instrument range to be used. Make certain the nephelometer gives stable readings in all sensitivity ranges used. b. Measurement of turbidity: Gently agitate the sample. Wait until air bubbles disappear and pour the sample into a cell. When possible, pour the well-mixed sample into a cell and immerse it in an ultrasonic bath for 1 to 2 s or apply vacuum degassing, causing complete bubble release. Read turbidity directly from the instrument display. c. Calibration of continuous turbidity monitors: Calibrate continuous turbidity of the water flowing out of them, using a laboratory model nephelometer, or calibrate the instruments according to the manufacturer's instructions with a formazin primary standard or appropriate secondary standard. Calculation with units of expression Report turbidity readings as follows: Expression Turbidity Range (NTU) 0-1 0.05 11-10 0.1 100-400 1 400-1000 50 Greater than 1000 100 NTU = nephelometric turbidity units. NTU = nephelometric turbidity units. Inference APHA 2130 B Scientific Panel on Methods of Sampling and Analysis		wen mixeu.				
sensitivity ranges used. b. Measurement of turbidity: Gently agitate the sample. Wait until air bubbles disappear and pour the sample into a cell. When possible, pour the well-mixed sample into a cell and immerse it in an ultrasonic bath for 1 to 2 s or apply vacuum degassing, causing complete bubble release. Read turbidity directly from the instrument display. c. Calibration of continuous turbidity monitors: Calibrate continuous turbidity monitors for low turbidities by determining the turbidity of the water flowing out of them, using a laboratory model nephelometer, or calibrate the instruments according to the manufacturer's instructions with a formazin primary standard or appropriate secondary standard. Calculation with units of expression Report turbidity readings as follows: Turbidity Range (NTU) Report to the Nearest (NTU) 0-1 0.05 1-10 0.1 100-400 1 400-1000 50 Greater than 1000 100 NTU = nephelometric turbidity units. NTU = nephelometric turbidity units. Inference APHA 2130 B Reference APHA 2130 B		a. Nephelometer calibration: Follow the manufacturer's operating instructions. Run at least one standard in each instrument range to be used. Make certain the nephelometer gives stable readings in all				
b. Measurement of turbidity: Gentiy agitate the sample. Wait until air bubbles disappear and pour the sample into a cell. When possible, pour the well-mixed sample into a cell and immerse it in an ultrasonic bath for 1 to 2 s or apply vacuum degassing, causing complete bubble release. Read turbidity directly from the instrument display. c. Calibration of continuous turbidity monitors: Calibrate continuous turbidity monitors for low turbidities by determining the turbidity of the water flowing out of them, using a laboratory model nephelometer, or calibrate the instruments according to the manufacturer's instructions with a formazin primary standard or appropriate secondary standard. Calculation with units of expression Report turbidity readings as follows: Turbidity Range (NTU) Report to the Nearest (NTU) 0-1 0.05 1-10 0.1 400-100 5 100-40 10 400-1000 50 Greater than 1000 100 NTU = nephelometric turbidity units. Inference APHA 2130 B Approved by Scientific Panel on Methods of Sampling and Analysis		sensitivity ranges used.				
pour the well-mixed sample into a cell and immerse it in an ultrasonic bath for 1 to 2 s or apply vacuum degassing, causing complete bubble release. Read turbidity directly from the instrument display.c. Calibration of continuous turbidity monitors: Calibrate continuous turbidity of the water flowing out of them, using a laboratory model nephelometer, or calibrate the instruments according to the manufacturer's instructions with a formazin primary standard or appropriate secondary standard.Calculation with units of expressionReport turbidity readings as follows:Turbidity Range (NTU)Report to the Nearest (NTU)0-10.051-100.110-401100-40010400-100050Greater than 1000100NTU = nephelometric turbidity units.Inference (Qualitative Analysis)NAReferenceAPHA 2130 BApproved byScientific Panel on Methods of Sampling and Analysis		b. Measurement of turbidity: bubbles disappear and pour	the sample into a cell. When possible,			
ultrasonic bath for 1 to 2 s or apply vacuum degassing, causing complete bubble release. Read turbidity directly from the instrument display. c. Calibration of continuous turbidity monitors: Calibrate continuous turbidity monitors for low turbidities by determining the turbidity of the water flowing out of them, using a laboratory model nephelometer, or calibrate the instruments according to the manufacturer's instructions with a formazin primary standard or appropriate secondary standard. Calculation with units of expression Report turbidity readings as follows: Turbidity Range (NTU) Report to the Nearest (NTU) 0-1 0.05 11-10 0.1 40-100 5 100-400 10 400-1000 50 Greater than 1000 100 NTU = nephelometric turbidity units. NTU = nephelometric turbidity units. Reference APHA 2130 B Scientific Panel on Methods of Sampling and Analysis		pour the well-mixed samp	le into a cell and immerse it in an			
complete bubble release. Read turbidity directly from the instrument display.c. Calibration of continuous turbidity monitors: Calibrate continuous turbidity of the water flowing out of them, using a laboratory model nephelometer, or calibrate the instruments according to the manufacturer's instructions with a formazin primary standard or appropriate secondary standard.Calculation with units of expressionReport turbidity readings as follows: Turbidity Range (NTU)0-10.051-100.10-10.05100-4001400-1005100-40010400-100050Greater than 1000100NTU = nephelometric turbidity units.Inference (Qualitative Analysis)NAApproved byScientific Panel on Methods of Sampling and Analysis		ultrasonic bath for 1 to 2	s or apply vacuum degassing, causing			
C. Calibration of continuous turbidity monitors: Calibrate continuous turbidity monitors for low turbidities by determining the turbidity of the water flowing out of them, using a laboratory model nephelometer, or calibrate the instruments according to the manufacturer's instructions with a formazin primary standard or appropriate secondary standard. Calculation with units of expression Report turbidity readings as follows: Turbidity Range (NTU) Report to the Nearest (NTU) 0-1 0.05 1-10 0.1 400-100 5 100-400 10 400-1000 50 Greater than 1000 100 NTU = nephelometric turbidity units. NTU = nephelometric turbidity units. Reference APHA 2130 B Approved by Scientific Panel on Methods of Sampling and Analysis		complete bubble release.	Read turbidity directly from the			
Calculation with units of expression Calculation with units of expression Calculation with units of expression Report turbidity readings as follows: Turbidity Range (NTU) Report to the Nearest (NTU) 0-1 0.05 1-10 0.1 10-40 1 400-100 5 100-400 10 400-1000 50 Greater than 1000 100 NTU = nephelometric turbidity units. Inference APHA 2130 B Approved by Scientific Panel on Methods of Sampling and Analysis		c Calibration of continuo	us turbidity monitors. Calibrate			
Calculation with units of expressionReport turbidity of the water flowing out of them, using a laboratory model nephelometer, or calibrate the instruments according to the manufacturer's instructions with a formazin primary standard or appropriate secondary standard.Calculation with units of expressionReport turbidity readings as follows:Turbidity Range (NTU)Report to the Nearest (NTU)0-10.051-100.110-40140-1005100-40010400-100050Greater than 1000100NTU = nephelometric turbidity units.Inference (Qualitative Analysis)APHA 2130 BScientific Panel on Methods of Sampling and Analysis		continuous turbidity monitors for low turbidities by determining				
model nephelometer, or calibrate the instruments according to the manufacturer's instructions with a formazin primary standard or appropriate secondary standard. Calculation with units of expression Report turbidity readings as follows: Turbidity Range (NTU) Report to the Nearest (NTU) 0-1 0.05 1-10 0.1 40-100 5 100-400 10 400-1000 50 Greater than 1000 100 NTU = nephelometric turbidity units. NTU = nephelometric turbidity units. Reference APHA 2130 B Scientific Panel on Methods of Sampling and Analysis		the turbidity of the water flowing out of them, using a laboratory				
manufacturer's instructions with a formazin primary standard or appropriate secondary standard. Calculation with units of expression Report turbidity readings as follows: Turbidity Range (NTU) Report to the Nearest (NTU) 0-1 0.05 11-10 0.1 40-100 5 100-400 10 400-1000 50 Greater than 1000 100 NTU = nephelometric turbidity units. NTU = nephelometric turbidity units. Reference APHA 2130 B Approved by Scientific Panel on Methods of Sampling and Analysis		model nephelometer, or calibrate the instruments according to the				
Appropriate secondary standard. Calculation with units of expression Report turbidity readings as follows: Turbidity Range (NTU) Report to the Nearest (NTU) 0-1 0.05 1-10 0.1 40-100 1 40-100 5 100-400 10 6 100-400 100-1000 50 100 100 100 100 100 100 100-1000 50 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <td< th=""><th></th><th colspan="4">manufacturer's instructions with a formazin primary standard or</th></td<>		manufacturer's instructions with a formazin primary standard or				
Calculation with units of expressionReport turbidity readings as follows:Turbidity Range (NTU)Report to the Nearest (NTU)0-10.051-100.10.10.110-401400-1005100-40010400-100050Greater than 1000100NTU = nephelometric turbidity units.Inference (Qualitative Analysis)NAReferenceAPHA 2130 BApproved byScientific Panel on Methods of Sampling and Analysis		appropriate secondary standard.				
Report the black y readings to follows:expressionTurbidity Range (NTU)Report to the Nearest (NTU)0-10.051-100.140-1005100-40010400-100050Greater than 1000100NTU = nephelometric turbidity units.InferenceNA(Qualitative Analysis)Approved byScientific Panel on Methods of Sampling and Analysis	Calculation with units of	Report turbidity	readings as follows:			
Inference APHA 2130 B Qualitative Analysis) APHA 2130 B Approved by Scientific Panel on Methods of Sampling and Analysis	expression	Turbidity Range (NTU)	Report to the Nearest (NTU)			
1-100.110-40140-1005100-40010400-100050Greater than 1000100NTU = nephelometric turbidity units.Inference (Qualitative Analysis)NAReferenceAPHA 2130 BApproved byScientific Panel on Methods of Sampling and Analysis	F	0-1	0.05			
Image: 10-40 1 40-100 5 100-400 10 400-1000 50 Greater than 1000 100 NTU = nephelometric turbidity units. NA (Qualitative Analysis) Reference APHA 2130 B Approved by Scientific Panel on Methods of Sampling and Analysis		1-10	0.1			
40-1005100-40010400-100050Greater than 1000100NTU = nephelometric turbidity units.NA(Qualitative Analysis)ReferenceAPHA 2130 BApproved byScientific Panel on Methods of Sampling and Analysis		10-40	1			
100-40010400-100050Greater than 1000100NTU = nephelometric turbidity units.Inference (Qualitative Analysis)ReferenceAPHA 2130 BApproved byScientific Panel on Methods of Sampling and Analysis		40-100 5				
400-1000 50 Greater than 1000 100 NTU = nephelometric turbidity units. Inference NA (Qualitative Analysis) Reference APHA 2130 B Approved by Scientific Panel on Methods of Sampling and Analysis		100-400 10				
Greater than 1000 100 NTU = nephelometric turbidity units. Inference NA (Qualitative Analysis) Reference APHA 2130 B Approved by Scientific Panel on Methods of Sampling and Analysis		400-1000	50			
Inference NA (Qualitative Analysis) APHA 2130 B Approved by Scientific Panel on Methods of Sampling and Analysis		Greater than 1000 100				
Inference NA (Qualitative Analysis) NA Reference APHA 2130 B Approved by Scientific Panel on Methods of Sampling and Analysis		NTU = nephelometric turbidity units.				
(Qualitative Analysis) Reference APHA 2130 B Approved by Scientific Panel on Methods of Sampling and Analysis	Inference	NA				
ReferenceAPHA 2130 BApproved byScientific Panel on Methods of Sampling and Analysis	(Qualitative Analysis)					
Approved by Scientific Panel on Methods of Sampling and Analysis	Reference	APHA 2130 B				
	Approved by	Scientific Panel on Methods of Sampling and Analysis				

एफएसएसएआई SSSCIE windle are active do arrow to flower reset Gathy and Gate dotatic Automoty of tests actives and to there are availy windlaws	Determination of Total dissolved solids by Gravimetric method		
Method No.	FSSAI 14.008:2024	Revision No. & Date	0.0
Scope	Solids refer to matter su waters, as well as do adversely affect water o high dissolved solids ger unfavorable physiologic 500 mg/L dissolved solid The following procedu specifically to water sa dissolved solids by gravi	spended or dissolved in pota mestic and industrial wast r effluent quality in a numbe nerally are of inferior palatab al reaction in the transient of ds is desirable for drinking w are is for checking analys mples with relatively comp metric method.	able, surface, and saline te waters. Solids may er of ways. Waters with ility and may induce an consumer, so a limit of raters. tes' correctness apply plete analyses of total
Caution	 Highly mineralized calcium, magnesium, chl require prolonged dry prolonged drying may a and chlorides. A large amount of re entrap water preventing volume of the sample sh should be about 100-200 	waters containing signific oride and sulphate may be h ing, desiccation and rapic lso cause loss of constituen sidue in the evaporating bas g its evaporation during dryi ould be adjusted so that the n Omg.	cant concentration of hygroscopic. These may d weighing. However, ts, particularly nitrates sin may crust over and ng. For this reason, the residue left after drying
Principle	The sample is filtered an bath. The residue after e or 179-181°C.	nd the filtrate evaporated in evaporation is dried to const	a tarred dish on steam ant mass at 103-105°C
Apparatus/Instruments	 Filter - Any one of the Glass fiber filter in diameter, pore Paper - Acid sufficiently reter equivalent to Wh Gooch crucible-3 fibre filter disc (V Sintered disc-G-5 Membrane filters Z. Filtering assembly dep 3. Drying oven with ther 180 ±2°C. 4. Desiccators provided v 5. Analytical Balance 200 mg. 6. Magnetic stirrer with 7 	following filter may be used. disc - (Whatman GF/C or eq e size 1.2 μm washed ashless hard filtentive for the fine particles tatman filter no. 542). 30mL capacity with 2.1 or Whatman or equivalent). 5 or its equivalent with pore sets 0.45 μm membrane. Dending upon the type of filtentiation with a colour indicating desidentiation of the capacity and capable of the filtentiation.	puivalent) 2.1 to 5.5 cm er finish; filter paper s (Pore size 2-2.5 μm 2.4 cm diameter glass size 1 to 2 μm. er selected. ning temperature up to ccant. weighing to nearest 0.1
Materials and Reagents			

Preparation of Reagents	NA			
Sample Preparation	Preservation of the samples is not practical. Analysis should begin as soon			
	as possible. Refrigeration or chilling to 4°C to minimize microbiological			
	decomposition of solids is recommended.			
Method of analysis	1. Heat the clean evaporating dish to 180°C for 1 hr. Cool in the			
	desiccator, Weigh and store in the desiccators until ready for use.			
	2. Filter a portion of the sample through any of the filter mentioned.			
	Select volume of the sample which has residue between 25 and			
	250mg preferably between 100 to 200mg. This volume may be			
	estimated from values of specific conductance to obtain a			
	measurable residue; successive aliquots of filtered sample may be			
	added to the sample dish.			
	3. Stir volume of sample with a magnetic stirrer or shake it vigorously.			
	Pipette this volume to a weighed evaporating dish placed on a steam			
	bath. Evaporation may also be performed in a drying oven. The			
	temperature of drying oven shall be lowered to approximately 98°C			
	to prevent boiling and splattering of the sample. After complete			
	evaporation of water from the residue, transfer this dish to an oven at 102 105°C or 170 191°C and dry to constant mass is till the			
	at 103-105°C or 1/9-181°C and dry to constant mass i.e. till the			
	allere duration (uqually 1.2 hr) is done to eliminate necessity of			
	a long duration (usually 1-2 hr) is done to eliminate necessity of			
	with a given type of sample when a number of samples of nearly			
	same type are to be analyzed has to be determined by trial			
	A Weigh the dish as soon as it has cooled avoiding residue to stay for			
	long time as some residues are hyprosconic and may absorb water			
	form desiccant that is not absolutely dry			
Calculation with units of	Calculate filterable residue from the following equation			
expression	Filterable residue, $mg/L = 1000M$			
	V			
	Where,			
	M = Mass in mg of filterable residue			
	V = volume in mL of the sample			
	Report in whole numbers for less than 100 mg/L and to three			
	significant figures for values above 100mg/L. Report the temperature of			
	determination.			
Inference	NA			
(Qualitative Analysis)				
Reference	IS : 3025 part 16 – 1984 (Reaffirmed 2002)- Methods of Sampling and Test			
	(Physical and chemical) for water and Waste Water : Filterable Residue			
	(Total Dissolved Solids)			
Approved by	Scientific Panel on Methods of Sampling and Analysis			

एफएसएसएआई 	Determin	ation of TDS based on con	ductivity	
Method No.	FSSAI 14.009:2024	Revision No. & Date	0.0	
Scope	Solids refer to matter su waters, as well as don adversely affect water of high dissolved solids ger unfavorable physiologic 500 mg/L dissolved solid The following procedu	spended or dissolved in pot mestic and industrial was r effluent quality in a numb nerally are of inferior palatak al reaction in the transient ds is desirable for drinking w ure is for checking analys	able, surface, and saline te waters. Solids may er of ways. Waters with pility and may induce an consumer, so a limit of vaters. ses' correctness apply	
	specifically to water samples with relatively complete analyses of total			
Caution	 Temperature affects conductivity, which varies by about 2% per degree Celsius. The temperature of 25°C is taken as standard. It is desirable to observe the conductivity at 25°C or as near to this temperature as possible, although compensation for variations from it can be made. In some instruments, this is made automatically. Dissolved carbon dioxide increases conductivity without increasing the mineral salt content. However, the effect is not large and it is usual to ignore it. In low pH water, H+ ions and in high pH water OH-ions, may contribute substantially to conductivity owing to high equivalent conductivity of these ions. Water with high silica (SiO2) content give relatively low values of electrical conductivity to total dissolved solids ratio as SiO2 (H4SiO4) does not contribute significantly to electrical conductance values. It is not convenient to use water containing large amount of suspended matter. It should be settled or filtered. High suspended matter also affects electrical conductance values. Samples containing fat, grease, oil, tar, etc, may contaminate the electrodes awaing armstis results. 			
Principle	Specific conductance is c variable resistance is ac unknown solution betwe cell. The cell constant is c Specific conductance = C Specific conductance = C	determined by using a wheat djusted so that it is equal t een platinized electrodes of determined by the following Conductance × Cell constant, <u>Cell constant</u> Resistance	tstone bridge in which a to the resistance of the a standard conductivity relationship: or	
	The cell constant is determined experimentally with a standard solution of known conductance.			
Apparatus/Instruments	 Conductivity Meter reading meter. Conductivity Cells- Comeasurement of wide ra and corresponding value SPECIFIC CONDUCTANCE 	r- Wheatstone bridge type ells of at least two different o ange of conductivities. Spec es of cell constants are given CE CELL CONSTANT	e or equivalent direct cell constants, for ific conductance ranges below	

	μS/cm at 25°C		
	20 - 1000	0.2	
	40 - 2000	0.5	
	100 - 4000	1.0	
	200 - 10000	2.0	
	400 - 20000	5.0	
	10000 - 40000	10.0	
	10000 10000	10.0	
	3 Thermometer - 0 to 50°C or	caduated in 0.1°C	
	Note- some direct readin	g conductivity meters have automatic	
	company some uncer reading conductivity meters have automatic		
Materials and Reagents	Standard Potassium Chloride S	alution	
Mater fais and Reagents	Standard i Otassium Chioride S	olution	
Proparation of Reagonts	Standard Potassium Chlorid	e Solution - Dissolve 0.5232gm potassium	
reparation of Reagents	chlorida driad at 190°C for	her in dominoralized water and dilute to	
	1000mL The distilled water w	and for propering standard solutions should	
	here a ware law can ductivity	The energific conductors of this colution at	
	nave a very low conductivity.	The specific conductance of this solution at	
	25°C is 1000µs/cm and the c	concentration of this solution is 0.00/02 N.	
	Alternatively, dissolve 0.7456 g	gm of anhydrous potassium chloride, dried at	
	180°C for 1 hour in distilled v	vater and make up to 1000 mL at 25°C. The	
	specific conductance of this	solution at 25°C is 1408 μ s/cm and the	
	concentration of this solution is	s 0.01N.	
Sample Preparation			
Method of analysis	1. Platinizing of cell- Platinizat	ion of cell is required when readings become	
	erratic. For platinizing, clean th	e cell in chromic acid solution once and rinse	
	several times with distilled wa	ter. Place the cell in a commercial platinizing	
	solution or dissolve 3 gm of ch	loroplatinic acid (H2PtCl6) in 10 mL water to	
	which 20 mg lead acetate has	been added. Connect it with two dry cells of	
	1.5 volts each in parallel and	reverse the direction of the current once a	
	minute for 6 minutes or till the	e shining platinum surface is covered. Repeat	
	the electrolytic process using 1	.0% sulphuric acid to remove chlorine. Wash	
	with distilled water and keep t	he cell immersed in distilled water when not	
	in use.		
	2. Set the instrument accord	ing to manufacturer's instruction. In some	
	instruments correction for cell	constant and temperature factor is provided.	
	If this arrangement is not there	e. cell constant may be separately determined	
	and values of specific condu	uctance should be converted to 25: C by	
	multiplying with the factor give	en in table1	
	Cell Constant $I = K1 + K2$		
	$\frac{1}{1} = \frac{1}{1} + \frac{1}{12}$		
	$K_x \times f$		
	Whore		
	Wilere	the notaceium chloride colution at 2500	
	$K_1 = conductivity in \mu s / cm of$	distilled water at 25 Cases 4 from at 25°C;	
	κ_2 = Conductivity in μ s/cm of	uistilied water at 25:C used for preparing the	
	reterence solution;		

	Kx = measu	red conducta	nce in µs/cm	ı; and		
	f = tempera	ture factor fo	r converting	specific cond	luctance val	ue to that at
	25°C (see table 1)					
	Note - if K2	is very low, i	t may be ign	ored.		
	3. Determin	e conductivi	ity of 0.007	02 N potass	ium chlorid	le or 0.01 N.
	Potassium o	chloride solu	ition by use	e of instrum	nent in acc	ordance with
	manufacture	er's instructi	ons. Measu	re the temp	perature of	the solution
	before and a	fter the test a	and take the	mean value (t°C).	
	4. Because t	the cell const	ants are sub	pject to slow	change eve	n under ideal
	conditions a	nd sometime	es to more ra	apid change i	under adver	se conditions,
	it is recomm	ended that co	ell constant b	be periodicall	y establishe	d.
	5. Determine	e conductanc	e of the unkr	nown sample.		
Calculation with units of	Calculate sp	ecific conduc	tance as follo	ows:		
expression		Specific cond	uctance at 25	5° C, μ s/cm =	KLf	
	Where					
	K = conduct	tivity, μs/cm;				
	L = Cell Con	stant; and				
	f = factor for	r converting s	specific cond	uctance valu	e to that at 2	5°C
	Temper	Factor	Temper	Factor	Temper	Factor
	ature	f	ature	F	ature	F
	:C	,	:C		:C	
	15.0	1.247	23.0	1.043	30.2	0.904
	16.0	1.218	23.2	1.038	30.4	0.901
	16.2	1.212	23.4	1.034	30.6	0.897
	16.4	1.206	23.6	1.029	30.8	0.894
	16.6	1.200	23.8	1.025	31.0	0.890
	16.8	1.194	24.0	1.020	31.2	0.887
	17.0	1.189	24.2	1.016	31.4	0.884
	17.2	1.184	24.4	1.012	31.6	0.880
	17.4	1.179	24.6	1.008	31.8	0.877
	17.6	1.174	24.8	1.004	32.0	0.873
	17.8	1.169	25.0	1.000	32.2	0.870
	18.0	1.163	25.2	0.996	32.6	0.864
	18.2	1.157	25.4	0.992	32.8	0.861
	18.4	1.152	25.6	0.988	33.0	0.858
	18.6	1.147	25.8	0.983	33.2	0.855
	18.8	1.142	26.0	0.979	33.4	0.852
	19.0	1.136	26.2	0.975	33.6	0.849
	19.2	1.131	20.4	0.9/1	33.8	0.040
	19.4	1.12/	20.0 26.0	0.967	34.0	0.843
	19.0 10.0	1.122	20.0	0.904	35.U 36.0	0.815
	20.0	1 1 1 1 2	27.0	0.900	37.0	0.013
	20.0	1 107	27.4	0.953	38.0	0.788
	20.2	1 107	27.6	0.950	39.0	0.775
	20.1	1.104	27.0	0.750	07.0	0.775

20.6	1.097	27.8	0.947	40.0	0.763	
20.8	1.092	28.0	0.943	41.0	0.750	
21.0	1.087	28.2	0.940	42.0	0.739	
21.2	1.082	28.4	0.936	43.0	0.727	
21.4	1.076	28.6	0.932	44.0	0.715	
21.6	1.073	28.8	0.929	45.0	0.705	
21.8	1.068	29.0	0.925	46.0	0.694	
22.0	1.064	29.2	0.921	47.0	0.683	
22.2	1.060	29.4	0.918			
22.4	1.055	29.6	0.914			
22.6	1.051	29.8	0.911			
22.8	1.047	30.0	0.907			

Calculation of TDS by conductivity

The ability of a solution to conduct an electric current is the functioning of the concentration and charge of ions in the solution and also depends on ionic mobility. Ionic mobility decreases with increase in number of ions per unit volume of solution due to interionic effect and other factors. Broadly, the relationship between conductivity and dissolved solids and conductivity and soluble cations is given by the following equations:

A K = S and, K = 100 C

Where

A = multiplication factor for converting conductivity values to total dissolved

solids;

K = conductivity in μ s/cm,

S = total dissolved solids in mg/L, and

C = total soluble cations in meq/L

Note 1- the value of A varies from 0.54 to 0.96 depending on the nature of ion present in water, and is usually taken as 0.65.

Note 2 -The relationship given above is approximate and is used for broad checking only and should not be used for accurate calculations. Types of ions present in solution effect these relationships. A pure solution of sodium bicarbonate with total dissolved solids 980 mg/L will have a conductivity of 1000 μ s/cm and a solution of sodium chloride with total dissolved solids 500 mg/L will have the same conductivity. Presence of relatively low conductivity particles or molecules like silicic acid and the presence of H+ and OH⁻ ions effect the ratio between conductivity and total dissolved solids.

	solids.
Inference	NA
(Qualitative Analysis)	
Reference	IS:3025 part 16 – 1984 (Reaffirmed 2002)- Methods of Sampling and Test
	(Physical and chemical) for water and Waste Water : Filterable Residue
	(Total Dissolved Solids)
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआई SSSC. Trisfle साइ सरका अधिकल्पा Food Laber and Experient Administrat Indea स्वास्थ्य और परिवार जन्मवाया का संवारम Marinety of Health and Farring Wordsaw	Determination of Anionic Surfactants as MBAS					
Method No.	FSSAI 14.010:2024	Revision No. & Date	0.0			
Scope	Determination of Anion Drinking Water (other th	l ic Surfactants as MBAS in M nan Mineral Water), Drinking	ineral water, Packaged Water (Purified)			
Caution	Chloroform is toxic and a suspected carcinogen. Take appropriate					
	 Methanol vapors are flammable and toxic; take appropriate precautions. 					
Principle	Methylene blue active	substances (MBAS) bring	about the transfer of			
	methylene blue, a cation	ic dye, from an aqueous solu	tion into an immiscible			
	organic liquid upon equi	libration. This occurs throug	h ion pair formation by			
	the MBAS anion and the resulting blue color in	the methylene blue cation.	The intensity of the sure of MBAS Anionic			
	surfactants are among	the most prominent of man	y sub stances, natural			
	and synthetic, showing i	nethylene blue activity. The	MBAS method is useful			
	for estimating the anion	nic surfactant content of wa	aters and wastewaters,			
	but the possible presen mind.	ce of other types of MBAS a	llways must be kept in			
	This method is relatively simple and precise. It comprises 3 successive					
	extractions from acid a	extractions from acid aqueous medium containing excess methylene blue				
	into chloroform (CHC	$2l_3$), followed by an aqu	eous backwash and			
	measurement of the blu	ie color in the $CHCl_3$ by spe	ctrophotometry at 652			
	mg/L.	cable at MDAS concentration	is down to about 0.025			
Apparatus/Instruments	a. Colorimetric equipme	nt: One of the following is rec	luired:			
	1) Spectrophotometer, fe	or use at 652 nm, providing a	light path			
	of 1 cm or longer. 2) Filter photometer, providing a light path of 1 cm or longer					
	2) Filter photometer, providing a light path of 1 cm or longer and equipped with a red color filter exhibiting maximum transmittance near					
	652 nm.					
	b. Separatory funnels: 500-mL, preferably with inert PTFE					
	stopcocks and stoppers.					
Materials and Reagents	a. Stock LAS solution)n stock stondard				
	c. Phenolphthalein	indicator solution				
	d. Sodium hydroxic	le (NaOH), I M				
	e. Sulfuric acid (H ₂	504), 1 N and 6 N				
	f. Chloroform (CHC	Cl ₃)				
	g. Methylene blue r	reagent				
	i. Methanol (CH ₂ O)	H)				
	j. Hydrogen peroxi	de (H ₂ 0 ₂), 30%				
	k. Glass wool					

Preparation of Reagents a. Stock LAS solution: Weigh an amount of the reference material equal to 1.00 g LAS on a 100% active basis. Dissolve in water and dilute to 1000 mL; 1.00 mL = 1.00 mg LAS. Store in a refrigerator to minimize biodegradation. If necessary, prepare weekly. Commercial stock standards are available; follow the manufacturer's recommendations for holding times. Preferably, obtain a 1000 mg/L LAS stock standard from a reputable commercial supplier. b. Standard LAS solution: Dilute 10.00 mL stock LAS solution to 1000 mL with water; 1.00 mL = 10.0 mg LAS. Prepare daily. c. Phenophythalein indicator solution, alcoholic. d. Sodium hydroxide (NaOH), 1 M. e. Sulfaric acid (H;S0,), 1 N and 6 N. f. Chloroform (CHCl ₃) g. Methylene blue reagent: Dissolve 100 mg methylene blue in 100 mL water. Transfer 30 mL to a 1000 mL. h. Wash solution: Add 41 mL 6 N H ₂ S0, to 500 mL water, 41 mL 6 N H ₂ S0, and 50 g sodium phosphate, mono-basic, monohrdrate, NaH2PO4 · H ₂ O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 mL 6 N H ₂ S0, to 500 mL water in a 1000 mL flask. Add 50 g NaH ₂ PO ₄ · H2O and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH ₂ OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H ₂ O ₂), 30%. k. Glass wool: Pre-extract with CHCl ₃ to remove interferenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and 10% of original value at the reporting limit and 10% of original valu		l. Water, reagent-grade, MBAS-free		
1.00 g LAS on a 100% active basis. Dissolve in water and dilute to 1000 mL; 1.00 mL = 1.00 mg LAS. Store in a refrigerator to minimize biodegradation. If necessary, prepare weekly. Commercial stock standards are available; follow the manufacturer's recommendations for holding times. Preferably, obtain a 1000 mg/L LAS stock standard from a reputable commercial supplier. b. Standard LAS solution: Dilute 10.00 mL stock LAS solution to 1000 mL with water; 1.00 mL = 10.0 mg LAS. Prepare daily. c. Phenolphthalein indicator solution, alcoholic. d. Sodium hydroxide (NaOH), I.M. e. Suffuric acid (H ₂ SO ₄), 1 N and 6 N. f. Chloroform (CHCl3) g. Methylene blue reagent: Dissolve 100 mg methylene blue in 100 mL water. Transfer 30 mL to a 1000-mL flask. Add 500 mL water, 41 mL 6 N H ₂ SO ₄ and 50 g sodium phosphate, mono-basic, monohydrate, NaH2PO4 - H ₂ O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 mL 6 N H ₂ SO ₄ to 500 mL water in a 1000 mL flask. Add 50 g NaH ₂ PO ₄ - H2O and shake until dissolved. Dilute to 1000 mL. i. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting l	Preparation of Reagents	a. Stock LAS solution: Weigh an amount of the reference material equal to		
1.00 mL = 1.00 mg LAS. Store in a refrigerator to minimize biodegradation. If necessary, prepare weekly. Commercial stock standards are available; follow the manufacturer's recommendations for holding times. Preferably, obtain a 1000 mg/L LAS stock standard from a reputable commercial supplier. b. Standard LAS solution: Dilute 10.00 mL stock LAS solution to 1000 mL with water, 1.00 mL = 10.0 mg LAS. Prepare daily. c. Phenolphthalein indicator solution, alcoholic. d. Sodium hydroxide (NaOII), IM. e. Suffuric acid (H ₂ So), 1 N and 6 N. f. Chloroform (CHCl ₃) g. Methylene blue reagent: Dissolve 100 mg methylene blue in 100 mL water. Transfer 30 mL to a 1000-mL flask. Add 500 mL water, 41 mL 6 N H ₂ O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 mL 6 N H ₂ So ₄ to 500 mL water in a 1000 mL flask. Add 50 g NaH ₂ PO ₄ + H2O and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH ₃ OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H ₂ O ₂), 30%. k. Glass wool: Pre-extract with CHCl ₃ to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation a. Preparation of calibration curve: Prepa		1.00 g LAS on a 100% active basis. Dissolve in water and dilute to 1000 mL;		
If necessary, prepare weekly. Commercial stock standards are available; follow the manufacturer's recommendations for holding times. Preferably, obtain a 1000 mg/L LAS stock standard from a reputable commercial supplier. b. Standard LAS solution: Dilute 10.00 mL stock LAS solution to 1000 mL with water; 1.00 mL = 10.0 mg LAS. Prepare daily. c. Phenolphthale in indicator solution, alcoholic. d. Sodium hydroxide (NaOH), 1 M. e. Sulfuric acid (H ₂ SO ₄), 1 N and 6 N. f. Chloroform (CHCl ₃) g. Methylene blue reagent: Dissolve 100 mg methylene blue in 100 mL water. Transfer 30 mL to a 1000-mL flask. Add 500 mL water, 41 mL 6 N H ₂ SO ₄ , and 50 g sodium phosphate, mono-basic, monohydrate, NaH2PO4 · H ₂ O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 mL 6 N H ₂ SO ₄ to 500 mL water in a 1000 mL flask. Add 50 g NaH ₂ PO ₄ · H2O and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH ₃ OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H ₂ O ₂), 30%. k. Glass wool: Pre-extract with CHCl ₃ to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis - a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated ove		1.00 mL = 1.00 mg LAS. Store in a refrigerator to minimize biodegradation.		
follow the manufacturer's recommendations for holding times. Preferably, obtain a 1000 mg/L LAS stock standard from a reputable commercial supplier. b. Standard LAS solution: Dilute 10.00 mL stock LAS solution to 1000 mL with water; 1.00 mL = 10.0 mg LAS. Prepare daily. c. Phenolphthalein indicator solution, alcoholic. d. Sodium hydroxide (NaOH), I.M. e. Sulfuric acid (H ₂ SO ₄), 1 N and 6 N. f. Chloroform (CHCl ₃) g. Methylene blue reagent: Dissolve 100 mg methylene blue in 100 mL water. Transfer 30 mL to a 1000-mL flask. Add 500 mL water, 41 mL 6 N H ₂ SO ₄ , and 50 g sodium phosphate, mono-basic, monohydrate, NaH2PO4 · H ₂ O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 HL 6 N H ₂ SO ₄ > 000 mL water in a 1000 mL flask. Add 50 g NaH ₂ PO ₄ · H2O and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH ₃ OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H ₂ O ₂), 30%. k. Glass wool: Pre-extract with CHCl ₃ to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples'		If necessary, prepare weekly. Commercial stock standards are available;		
obtain a 1000 mg/L LAS stock standard from a reputable commercial supplier.b. Standard LAS solution: Dilute 10.00 mL stock LAS solution to 1000 mL with water; 1.00 mL = 10.0 mg LAS. Prepare daily. c. Phenolphthalein indicator solution, alcoholic. d. Sodium hydroxide (NaOH), I.M. e. Sulfuric acid (H2S0 ₄), 1 N and 6 N. f. Chloroform (CHCl ₃) g. Methylene blue reagent: Dissolve 100 mg methylene blue in 100 mL water. Transfer 30 mL to a 1000-mL flask. Add 500 mL water, 41 mL 6 N H ₂ SO ₄ , and 50 g sodium phosphate, mono-basic, monohydrate, NaH2PO4 - H ₂ O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 mL 6 N H ₂ SO ₄ to 500 mL water in a 1000 mL flask. Add 50 g NaH ₂ PO ₄ · H2O and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH ₃ OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H2O ₂), 30%. k. Glass wool: Pre-extract with CHCl ₃ to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions.Sample PreparationMethod of analysisa. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL. in paragraphs d and e blow, and plot a		follow the manufacturer's recommendations for holding times. Preferably,		
supplier. b. Standard LAS solution: Dilute 10.00 mL stock LAS solution to 1000 mL with water; 1.00 mL = 10.0 mg LAS. Prepare daily. c. Phenolphthalein indicator solution, alcoholic. d. Sodium hydroxide (NaOH), I.M. e. Sulfuric acid (H ₂ SO ₄), 1 N and 6 N. f. Chloroform (CHCl ₃) g. Methylene blue reagent: Dissolve 100 mg methylene blue in 100 mL. water. Transfer 30 mL to a 1000-mL. flask. Add 500 mL water, 41 mL 6 N H ₂ SO ₄ , and 50 g sodium phosphate, mono-basic, monohydrate, NaH2PO4 - H ₂ O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 mL 6 N H ₂ SO ₄ to 500 mL water in a 1000 mL flask. Add 50 g NaH ₂ PO ₄ · H2O and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH ₃ OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H ₂ O ₂), 30%. k. Glass wool: Pre-extract with CHCl ₃ to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and		obtain a 1000 mg/L LAS stock standard from a reputable commercial		
b. Standard LAS solution: Dilute 10.00 mL stock LAS solution to 1000 mL with water; 1.00 mL = 10.0 mg LAS. Prepare daily. c. Phenolphthalein indicator solution, alcoholic. d. Sodium hydroxide (NaOH), I M. e. Sulfuric acid (H ₂ SO ₄), 1 N and 6 N. f. Chloroform (CHCl ₃) g. Methylene blue reagent: Dissolve 100 mg methylene blue in 100 mL water. Transfer 30 mL to a 1000-mL flask. Add 500 mL water, 41 mL 6 N H ₂ SO ₄ , and 50 g sodium phosphate, mono-basic, monohydrate, NaH2PO4 · H ₂ O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 mL 6 N H ₂ SO ₄ to 500 mL water in a 1000 mL flask. Add 50 g NaH ₂ PO ₄ · H2O and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH ₃ OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H ₂ O ₂), 30%. k. Glass wool: Pre-extract with CHCl ₃ to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration c		supplier.		
with water; 1.00 mL = 10.0 mg LAS. Prepare daily. c. Phenolphthalein indicator solution, alcoholic. d. Sodium hydroxide (NaOH), 1 M. e. Sulfuric acid (H ₂ SO ₄), 1 N and 6 N. f. Chloroform (CHCl ₃) g. Methylene blue reagent: Dissolve 100 mg methylene blue in 100 mL water. Transfer 30 mL to a 1000-mL flask. Add 500 mL water, 41 mL 6 N H ₂ SO ₄ , and 50 g sodium phosphate, mono-basic, monohydrate, NaH2PO4 - H ₂ O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 mL 6 N H ₂ SO ₄ to 500 mL water in a 1000 mL flask. Add 50 g NaH ₂ PO ₄ · H2O and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH ₃ OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H ₂ O ₂), 30%. k. Glass wool: Pre-extract with CHCl ₃ to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for al others. Otherwise		b. Standard LAS solution: Dilute 10.00 mL stock LAS solution to 1000 mL		
 c. Phenolphthalein indicator solution, alcoholic. d. Sodium hydroxide (NaOH), 1 M. e. Sulfuric acid (H₂SO₄), 1 N and 6 N. f. Chloroform (CHCl₃) g. Methylene blue reagent: Dissolve 100 mg methylene blue in 100 mL water. Transfer 30 mL to a 1000-mL flask. Add 500 mL water, 41 mL 6 N H₂SO₄, and 50 g sodium phosphate, mono-basic, monohydrate, NaH2PO4 - H₂O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 mL 6 N H₂SO₄ to 500 mL water in a 1000 mL flask. Add 50 g NaH₂PO₄ - H2O and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH₃OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H₂O₂), 30%. k. Glass wool: Pre-extract with CHCl₃ to remove interferences. I. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular 		with water; 1.00 mL = 10.0 mg LAS. Prepare daily.		
d. Sodium hydroxide (NaOH), 1 M. e. Sulfuric acid (H ₂ S0 ₄), 1 N and 6 N. f. Chloroform (CHCl ₃) g. Methylene blue reagent: Dissolve 100 mg methylene blue in 100 mL water. Transfer 30 mL to a 1000-mL flask. Add 500 mL water, 41 mL 6 N H ₂ SO ₄ , and 50 g sodium phosphate, mono-basic, monohydrate, NaH2PO4 - H ₂ O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 mL 6 N H ₂ SO ₄ to 500 mL water in a 1000 mL flask. Add 50 g NaH ₂ PO ₄ - H2O and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH ₃ OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H ₂ O ₂), 30%. k. Glass wool: Pre-extract with CHCl ₃ to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each st		c. Phenolphthalein indicator solution, alcoholic.		
 e. Sulfuric acid (H₂S0₄), 1 N and 6 N. f. Chloroform (CHCl₃) g. Methylene blue reagent: Dissolve 100 mg methylene blue in 100 mL water. Transfer 30 mL to a 1000-mL flask. Add 500 mL water, 41 mL 6 N H₂S0₄, and 50 g sodium phosphate, mono-basic, monohydrate, NaH2PO4 · H₂O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 mL 6 N H₂S0₄ to 500 mL water in a 1000 mL flask. Add 50 g NaH₂PO₄ · H2O and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH₂OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H₂O₂), 30%. k. Glass wool: Pre-extract with CHCl₃ to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular 		d. Sodium hydroxide (NaOH), I M.		
f. Chloroform (CHCl ₃) g. Methylene blue reagent: Dissolve 100 mg methylene blue in 100 mL water. Transfer 30 mL to a 1000-mL flask. Add 500 mL water, 41 mL 6 N H ₂ SO ₄ , and 50 g sodium phosphate, mono-basic, monohydrate, NaH2PO4 · H ₂ O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 mL 6 N H ₂ SO ₄ to 500 mL water in a 1000 mL flask. Add 50 g NaH ₂ PO ₄ · H2O and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH ₃ OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H ₂ O ₂), 30%. k. Glass wool: Pre-extract with CHCl ₃ to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecula		e. Sulfuric acid (H_2SO_4), 1 N and 6 N.		
g. Methylene blue reagent: Dissolve 100 mg methylene blue in 100 mL water. Transfer 30 mL to a 1000-mL flask. Add 500 mL water, 41 mL 6 N H ₂ SO ₄ , and 50 g sodium phosphate, mono-basic, monohydrate, NaH2PO4 - H ₂ O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 mL 6 N H ₂ SO ₄ to 500 mL water in a 1000 mL flask. Add 50 g NaH ₂ PO ₄ · H2O and shake until dissolved. Dilute to 1000 mL. i. Wath solution: Add 41 mL 6 N H ₂ SO ₄ to 500 mL water in a 1000 mL flask. Add 50 g NaH ₂ PO ₄ · H2O and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH ₃ OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H ₂ O ₂), 30%. k. Glass wool: Pre-extract with CHCl ₃ to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standrds. Pipet portions of the standard LAS so		f. Chloroform (CHCl ₃)		
water. Transfer 30 mL to a 1000-mL flask. Add 500 mL water, 41 mL 6 N H2SO4, and 50 g sodium phosphate, mono-basic, monohydrate, NaH2PO4 - H2O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 mL 6 N H2SO4 to 500 mL water in a 1000 mL flask. Add 50 g NaH2PO4 · H2O and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH3OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H2O2), 30%. k. Glass wool: Pre-extract with CHCl3 to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		g. Methylene blue reagent: Dissolve 100 mg methylene blue in 100 mL		
H2SO4, and 50 g sodium phosphate, mono-basic, monohydrate, NaH2PO4 - H2O. Shake until dissolved. Dilute to 1000 mL. h. Wash solution: Add 41 mL 6 N H2SO4 to 500 mL water in a 1000 mL flask. Add 50 g NaH2PO4 · H2O and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH3OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H2O2), 30%. k. Glass wool: Pre-extract with CHCl3 to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demostrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		water. Transfer 30 mL to a 1000-mL flask. Add 500 mL water, 41 mL 6 N		
H20. Shake until dissolved. Different of SOO mL. h. Wash solution: Add 41 mL 6 N H2SO4 to 500 mL water in a 1000 mL flask. Add 50 g NaH2PO4 · H20 and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH3OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H202), 30%. k. Glass wool: Pre-extract with CHCl3 to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		H_2SO_4 , and 50 g sodium phosphate, mono-basic, monohydrate, NaH2PO4 \cdot		
In. Wash Solution: Add 41 ML 6 N H2004 to Solo ML water in a 1000 mL hask. Add 50 g NaH2PO4 · H20 and shake until dissolved. Dilute to 1000 mL. i. Methanol (CH30H). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H202), 30%. k. Glass wool: Pre-extract with CHCl3 to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		H_2U . Shake until dissolved. Dilute to 1000 mL.		
Add 30 g Nangr 04 * 120 and shade thind itsolved. Different to 1000 hill.i. Methanol (CH ₃ OH). Caution: Methanol vapors are flammable and toxic; take appropriate precautions. j. Hydrogen peroxide (H ₂ O ₂), 30%. k. Glass wool: Pre-extract with CHCl ₃ to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions.Sample PreparationMethod of analysisa. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		h. Wash solution: Add 41 mL 6 N H_2SO_4 to 500 mL water in a 1000 mL flask.		
In Methanol (Grigori): Caution: Methanol vapors are nanimable and toxic, take appropriate precautions. j. Hydrogen peroxide (H ₂ 0 ₂), 30%. k. Glass wool: Pre-extract with CHCl ₃ to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions. Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		Add 50 g NaH ₂ PO ₄ \cdot H2O and shake until dissolved. Dilute to 1000 mL.		
j. Hydrogen peroxide (H ₂ 0 ₂), 30%. k. Glass wool: Pre-extract with CHCl ₃ to remove interferences. l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions.Sample PreparationMethod of analysisa. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		i. Methanol (LH ₃ UH). Laution: Methanol vapors are flammable and toxic; take appropriate precautions.		
Invalogen peronac (1192), 50%.k. Glass wool: Pre-extract with CHCl3 to remove interferences.l. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions.Sample PreparationMethod of analysisa. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		i Hydrogen peroxide ($H_2 \Omega_2$) 30%		
In class theorem is consister function of the interferencesI. Water, reagent-grade, MBAS-free. Use for making all reagents and dilutions.Sample PreparationMethod of analysisa. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		k. Glass wool: Pre-extract with CHCl ₃ to remove interferences.		
Sample Preparation Method of analysis a. Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		l. Water, reagent-grade, MBAS-free, Use for making all reagents and		
Sample PreparationMethod of analysisa.Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		dilutions.		
Method of analysisa.Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular	Sample Preparation			
Method of analysisa.Preparation of calibration curve: Prepare an initial calibration curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular				
curve consisting of at least 5 standards covering the referenced or desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular	Method of analysis	a. Preparation of calibration curve: Prepare an initial calibration		
desired concentration range. Provided that linearity is demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		curve consisting of at least 5 standards covering the referenced or		
demonstrated over the range of interest (r = 0.995 or better), run daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		desired concentration range. Provided that linearity is		
daily check standards at the reporting limit and a concentration above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		demonstrated over the range of interest ($r = 0.995$ or better), run		
above the expected samples' concentration. Check standard results must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		daily check standards at the reporting limit and a concentration		
must be within 25% of original value at the reporting limit and 10% of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		above the expected samples' concentration. Check standard results		
of original value for all others. Otherwise, prepare a new calibration curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		must be within 25% of original value at the reporting limit and 10%		
curve. Prepare a series of separatory funnels for a reagent blank and selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		of original value for all others. Otherwise, prepare a new calibration		
selected standards. Pipet portions of the standard LAS solution into funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		curve. Prepare a series of separatory funnels for a reagent blank and		
funnels. Add sufficient water to make the total volume 100 mL in each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		selected standards. Pipet portions of the standard LAS solution into		
each separatory funnel. Treat each standard as described in paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		funnels. Add sufficient water to make the total volume 100 mL in		
paragraphs d and e below, and plot a calibration curve of absorbance versus micrograms LAS taken, specifying the molecular		each separatory funnel. Treat each standard as described in		
absorbance versus micrograms LAS taken, specifying the molecular		paragraphs d and e below, and plot a calibration curve of		
		absorbance versus micrograms LAS taken, specifying the molecular		
weight of the LAS used.		weight of the LAS used.		
b. Sample size: For the direct analysis of waters and wastewaters,		b. Sample size: For the direct analysis of waters and wastewaters,		
select the sample volume on the basis of expected MBAS		select the sample volume on the basis of expected MBAS		
concentration. The table below is for guidance; adjust volumes, if ne		concentration. The table below is for guidance; adjust volumes, if ne		

	Ex	pected MBAS Concentration (mg/L)	Sample Taken (mL)
		0.025-0.080	400
		0.08-0.40	250
		0.4-2.0	100
	If t	he expected MBAS concentration is n	ore than 2 mg/L, dilute
	the	e sample containing 40 to 200 mg MB	AS to 100 mL with water.
	Fo	r analysis of samples purified by	sublation, dissolve sublate
	res	sidue in 10 to 20 mL methanol; quar	titatively transfer the entire
	am	ount (or a suitable portion if more th	nan 200 g MBAS is expected)
	to	25 to 50 mL water; evaporate with	out boiling until methanol is
	go 1	ne, adding water as necessary to a	void going to dryness; and
	dil	ute to about 100 mL with water.	
	c. Pe	roxide treatment: If necessary,	to avoid decolorization of
	me	thylene blue by sulfides, add a few di	cops of 30% H ₂ O ₂ .
	d. Ior	pairing and extraction:	-
	1)	Add the sample to a separatory funne	el. Make alkaline by dropwise
	ad	dition of 1 M NaOH, using phenolphth	alein indicator.
	Dis	scharge the pink color by dropwise ac	ldition of 2 M H2SO4.
	2)	Add 10 mL CHC13 and 25 mL meth	ylene blue reagent. Rock the
	fur	nnel vigorously for 30 s and let the pl	nases separate. Alternatively,
	pla	ice a magnetic stirring bar in the sepa	aratory funnel; lay the funnel
	on	its side on a magnetic mixer and ad	ljust the speed of stirring to
	pro	oduce a rocking motion. Excessive a	gitation may cause emulsion
	for	mation. To break persistent emuls	ions add a small volume of
	iso	propyl alcohol (<10 mL); add the	same volume of isopropyl
	alc	ohol to all standards. Some samples	s require a longer period of
	ph	ase separation than others. Before d	raining the CHCl ₃ layer, swirl
	gei	ntly, then let settle.	
	3)	Draw off the CHCl ₃ layer into a seco	ond separatory funnel. Rinse
	the	e delivery tube of the first separatory	funnel with a small amount
	of	$CHCl_3$. Repeat the extraction 2 add	litional times, using 10 mL
	СН	Cl_3 each time. If the blue color in the	water phase becomes faint
	or	disappears, discard and repeat, using	a smaller sample.
	4)	Combine all CHCl3 extracts in the sec	ond separatory funnel.
	Ad	d 50 mL wash solution and shake vi	gorously for 30 s. Emulsions
	do	not form at this stage. Let settle, sy	wirl, and draw off the CHCl ₃
	lay	er through a funnel containing a plug	g of glass wool into a 100-mL
	vo	lumetric flask; the filtrate must be cle	ear. Extract the wash solution
	tw	ice with 10 mL CHCl $_3$ each and add t	to the flask through the glass
	wo	ol. Rinse the glass wool and funnel	with CHCl ₃ . Collect washings
	in	volumetric flask, dilute to mark with	CHCl ₃ , and mix well.
	e. Me	easurement: Determine absorbance a	at 652 nm against a
	bla	nk of CHCl₃.	
			_
Calculation with units of	From the	calibration curve, read micrograms	s of apparent LAS (mol wt)
expression	correspon	ding to the measured absorbance.	

	mg/L= μg apparent LAS		
	mL original sample		
	In laboratory records, record as LAS, mol wt.		
Inference	NA		
(Qualitative Analysis)			
Reference	APHA 5540 c		
Approved by	Scientific Panel on Methods of Sampling and Analysis		
The second secon	Determination of Anionic Surface Active Agents		
--	---	--	---
Method No.	FSSAI 14.011:2024	Revision No. & Date	0.0
Scope	Surfactants are a large number of (cleaning) a wash active abilities. Th wet the fibers and surfac	group of surface-active su applications. Most surfactan ey reduce the surface tensio ces, they loosen and encapsul ling will not re-deposit on th	bstances with a great ts have degreasing or n of the water so it can late the dirt and, in that
	way, ensure that the solling will not re-deposit on the surfaces. Surfactants have a hydrophobic (water repellent) part and a hydrophilic ('water loving') part. The hydrophobic part consists of an uncharged carbohydrate group that can be straight, branched, cyclic or aromatic. Most surfactants are more or less toxic to aquatic organisms due to their surface activity which will react with the biological membranes of the organisms. The biological		
	Generally, the linear ch chains. Also, the toxic e increase of the chain len toxicity to aquatic organ	affects vary with the chain s offects vary with the chain s of the chain s of the chain s of the chain s of the chain s	radable than branched structure. Generally, an leads to an increase in
Caution	 Chloroform is to: precautions agai Methanol vapors precautions. 	xic and a suspected carcinogenst inhalation and skin exposenter are flammable and toxic; tak	en. Take appropriate sure. xe appropriate
Principle	Methylene blue a cation alkaline medium. The interference present is methylene blue comple methylene blue solution measured at the maximu is applicable to limit of standard surfactants in o	ic dye forms the salts with an se salts are extracted w eliminated by extraction x from alkaline solutions an . The absorbance of the sepa um absorption wavelength o of detection of about 0.05 listilled water.	nionic surfactants in an vith chloroform. Any of anionic surfactant nd shaking with acidic arated organic phase is of 650 nm. This method mg/L for solutions of
Apparatus/Instruments	 a. pH-Meter-With s b. Spectrophotome with cells of option c. Gas stripping Aption d. Seperatory Funn 	uitable electrodes made of gl ter, capable of measurement cal path length of 10mm &50 paratus- One liter capacity. els 500mL capacity.	lass. at 650 nm, equipped) mm
Materials and Reagents	 a. Sodium Chloride b. Ethyl Acetate c. Chloroform d. Ethanol, 95% e. Methanol (Fresh f. Sulphuric Acid So g. Ethanolic Sodium h. Methylene Blue, 	ly Distilled) blution- 0.5 ml h Hydroxide - 0.1 mol/L Neutral Solution	

	j. Buffer Solution, pH 10	
	k. Phenolphthalein Indicator Solution	
	l. Dodecylbenzene Sulphonic Acid Methyl Ester (Tetra propylene	
	Type), stock standard solution	
Preparation of Reagents	• Ethanolic Sodium Hydroxide - 0.1 mol/L - Dissolve 4gm of sodium	
	hydroxide pellets in ethanol and dilute to I000 mL with the same	
	ethanol.	
	• Methylene Blue, Neutral Solution - Dissolve 0.350 gm of	
	methylene blue in water and dilute to 1000 mL. Prepare the solution	
	at least 24 hr before use.	
	• Methylene Blue. Acidic Solution Dissolve 0.350 gm of methylene	
	blue in 500 mL of water and add 6.50 mL of sulphuric acid (Density -	
	L84 gm/mL). Dilute with water to 1000 mL after mixing. Prepare	
	solution at least 24 hr before use. The absorbance of the chloroform	
	$\frac{1}{10000000000000000000000000000000000$	
	nath length at 650 nm. In the case of higher blank absorbance either	
	wash the methylene blue solution twice with chloroform or use	
	other batches of Methylene Blue.	
	• Buffer Solution , pH 10 Dissolve 24 gm of sodium hydrogen	
	carbonate (NaHCO3) and 27 gm of anhydrous sodium carbonate	
	(Na2CO3) in water and dilute to 1000 mL	
	Phenolphthalein Indicator Solution Dissolve 1.0 gm of	
	nhenolphthalein in 50 mL of ethanol and add 50 mL of water with	
	stirring continuously. Filter off any precipitates	
	Dodacylbanzana Sulnhanic Acid Mathyl Estar (Tatra propylana)	
	Type) stock standard solution —Weigh 400 mg to 450 mg of	
	Dodecylbenzene Sulphonic acid methyl ester to the pearest 0.1 mg	
	into a round-bottom flask and add 50 mL of ethanol sodium	
	http:// http:/	
	reflux condenser and hoil for 1 hr. After cooling rinse the condenser	
	and the ground-glass joint with about 30 ml of ethanol and add the	
	ringing to the contents of the flask. Neutralize the solution with	
	sulphuric acid against phonolophthalein until it becomes colorloss	
	Transfer the solution to a 1000 mL volumetric flack dilute to the	
	mark with water and mix. This standard solution is stable for 6	
	mark with water and mix. This standard solution is stable for o	
Sample Prenaration		
Sample i reparation		
Method of analysis	1. Separation of the Surfactant - Non-surfactant methylene blue active	
2	substances can cause errors in the test of methylene blue index. Stripping is	
	recommended for concentrating small amount of surfactants from water	
	samples. Separate suspended matter by centrifugation, but note that	
	adsorbed surfactants on suspended matter will not be determined.	
	Place a measured quantity of the test sample, up to 1000 mL in the gas-	
	stripping apparatus. Install the stripping apparatus in well ventilated hood	
	to carry off ethyl acetate vapour. Separation is improved by addition of	

sodium chloride.
If sample volume exceeds 500 mL, add 100 gm of sodium chloride dissolve
by passing nitrogen gas or air through it. If a smaller test sample volume is
used, dissolve 100 gm of sodium chloride in 400 mL of water and add this
solution to test sample.
If necessary, add water to bring the sample surface up to the level of the
upper stopcock. Add 100 mL ethyl acetate. Fill the wash bottle in the gas
line (nitrogen or air) two-third full with ethyl acetate. Pass a gas stream of
20 L/h to 50 L/h through the gas stripping apparatus. Adjust the gas flow in
such a way that the phases remain separate and no turbulence is produced
at the interface
The significant mixing of the phases and consequent solution of ethyl
acetate in the water is avoided Ston the gas flow after 5 min. If a loss of
more than 20 percent (y/y) of the organic phase has occurred due to
more than 20 percent $(\sqrt{7})$ of the organic phase has occurred due to solution in the water phase discord the test comple. Due off the errorie
solution in the water phase discard the test sample. Run on the organic
phase completely into a separating runnel. Return any water in the
separating funnel to the gas-stripping apparatus.
Filter the ethyl acetate solution through a dry qualitative gas-filter paper
into a 250 mL flask. Add a further 100 mL of ethyl acetate to the gas-
stripping apparatus and again pass nitrogen or air through it for 5 min.
separate the organic layer as described above, using the same separating
funnel, filter, and add it to the first portion.
Rinse the filter paper and funnel with 25 mL of ethyl acetate. Remove all the
ethyl acetate solution on a water bath under a hood. To speed up the
process direct a gentle air stream over the surface of the solution. Dissolve
the residue in about 5 mL of methanol and 50 mL of water. Transfer the
solution quantitatively to a 100 mL volumetric flask and dilute to the mark
with water.
1. Blank Test - Carry out a blank test at 650 nm and subtract the
interpolated absorbance, A0 from the absorbance A1 of the test
sample. Under the given conditions the absorbance A0 of the blank
test shall not exceed 0.02 per 10 nm optical path length otherwise
equipment and the reagents shall be checked carefully for any
contamination.
2. Test with the sample
i. Transfer a measured volume of the test sample into a separating
funnel. This test portion should contain 20 µg to 200µg of MBAS
(methylene blue active substances). In the lower MBAS range, a test
portion up to 100 mL may be used. If the volume of the test portion
is less than 100 mL dilute with water to 100 mL.
ii. Add 5.0 mL of neutral methylene blue solution. 10 mL of buffer
solution and 15 mL chloroform.
iii. Shake evenly and gently about twice a second for 1 min. preferably
in a horizontal plane.
iv. Allow the layers to separate as completely as possible and swirl the
funnel to dislodge dronlets from the sides of the funnel
y. Allow to settle for 2 min and then run as much as possible of the
 v. mow to settle for 2 min, and then run as much as possible of the

	chloroform layer into a second separating funnel containing 110 mL
	of water and E.O. mL of agidia mathylana blue solution
	of water and 5.0 mL of actuic methylene blue solution.
	vi. Shake uniformly but not too vigorously for 1 min as previously
	described.
	vii. Filter the chloroform layer through a cotton or glass wool filter
	wetted with chloroform into a 50 mL volumetric flask.
	viii. Repeat the extraction of the alkaline and acidic solution using a 10
	mL portion of chloroform for the extraction.
	ix. Separate the chloroform layer and filter it through the same filter,
	into the volumetric flask.
	x. Repeat the extraction using a further 10 mL of portion of chloroform
	and filter that into a 50 mL of volumetric flask.
	xi. Dilute to the mark with chloroform and mix.
	xii. For each test sample carry out the complete extraction for a blank
	determination with 100 mL water.
Calculation with units of	Measure the absorbance for the test sample as well as for the blank test at
expression	650 nm in cells of optical path length 10 mm to 50mm against chloroform.
	The absorbance of the test sample should not be more than that of the
	blank.
Inference	NA
(Qualitative Analysis)	
Reference	IS: 13428 - 2005 (Reaffirmed- 2009) Packaged Natural Mineral water
	Specifications. Annex: K (Method of test for Anionic Surface Active A
Approved by	Scientific Panel on Methods of Sampling and Analysis

WINDER OF HEADER	Determination of Boron by Azomethine Method			
Method No.	FSSAI 14.012:2024		Revision No. & Date	0.0
Scope	Detern than M	nination of Boron lineral Water), Dr	in Mineral water, Packaged	Drinking Water (other
Caution	Follow	all safety procedu	ares while handling and dispo	osing solutions. Wear
	labora	tory apron, shoes,	safety goggles and mask whi	ile working with
	chemi	cals. Perform worl	c in fume hood while working	g with solvents. Refer
	to MSI	OS (Material Safety	v Data Sheets) for specific info	ormation
Principle	Reacti	on of azomethine-	H, which is the condensation	product of H-acid (8-
	amino	-naphth-l-ol-3.6-d	isulfonic acid) and salicylalde	ehyde, with dissolved
	forms	of borate at a pH o	of about 6, leads to the format	tion of a yellow
	comple the ray	ex that is measure	a spectrometrically at the ab	sorption maximum in
Annaratus /Instruments		Ordinary laborat	ory apparatus made of polyn	ronvlene nolvethylene
Apparatus/ instruments	а.	or polytetrafluor	oethylene, where applicable.	nopylene, porycenylene
	b.	Spectrometer, fo	r use in the wavelength range	e of 410 nm to 420 nm,
		with cells of an o	ptical path length between 1	0 mm and 50 mm.
Materials and Reagents	a. Azomethine-H, Solution			
	b. Buffer Solution (pH 5.9)			
	c. Reagent Solution			
	d.	Borate stock solu	ition	
	e.	Boron standard s	solution-I	
	f.	Boron standard	Solution-II	
Prenaration of Reagents	a. Azomethine-H, Solution: Dissolve 1.0 gm of azomethine-H sodium			
Treparation of Reagents	а.	salt [8-N-2-hvdr	oxybenzylidene)-amino nap	hth-l-o1-3.6 disulfonic
	acid] (CI7HI2NNaO3S2) and 3.0 gm of ± L ascorbic acid (C6H8O6) in			
	water and dilute to 100 mL in a volumetric flask. The solution is			
	stable for up to one week when stored in a polyethylene bottle at a			
		temperature of b	etween 4-6°C.	
	b. Buffer Solution (pH 5.9): Mix 250 gm of ammonium acetate			
		(CH3COONH4) 2	50 mL of water, 80 mL of sul	phuric acid (H2SO4)
		(sp.gr-1.21 g/ml	J, 5 mL of phosphoric acid (F	12PO4) (sp.gr - 1.71
		g/mLJ, 1.0gm 01	odiamina tetracetic acid deh	udrato
		(C10H14N2Na2)	(1991) with stirring and gen	itle heating
	C.	Reagent Solutio	n : Mix equal volumes of reag	ents prepared in a and
		b. Prepare this so	olution on the day of use and	store in a Polyethylene
		bottle.	-	
	d.	Borate, stock so	olution corresponding to 1.0	of B per liter. Dissolve
		5.719 gm of bori	c acid (H3BO3) in 1000 mL o	f water. Store it in a
		polyethylene bot	tle. 1 mL of this stock solutio	n contains 1.0 mg of
		borate, expresse	d as B.	

	e. Boron, standard solution-I corresponding to 10.0 mg of B per liter. Dilute 10 mL of borate stock solution (see 2.4) to 1000 mL with
	water.
	1 mL of this standard solution contains 10.0 μ g of borate, expressed as P
	ds D. f Boron standard solution-II corresponding to 1.0 mg of B per liter
	1. Dilute 10 mL of horate solution (see 2.5) to 100 mL with water 1mL
	of this standard solution contains 10 ug of horate expressed as B
	g. Calcium hydroxide [Ca (OH) ₂]
Sample Preparation	
Method of analysis	1. Determination
	 Transfer 25.0 mL of the sample, or a smaller amount of the sample diluted to 25mL with distilled water, into a 100 mL polyethylene flask. Add 10mL of Azomethine-H. Mix and allow to stand in the dark for 2 hr at 20 ± 1°C, then measure
	 the absorbance at the absorption maximum in the range of 410 nm to 420 nm against distilled water in a cell of optical path length 10mm, using the spectrometer set up according to the manufacturer's instructions and after setting the zero with distilled water in the cell. Alternatively use a cell of 50 mm optical path length for low boron
	concentratively use a cent of 50 mm optical path length for low boron concentrations of up to about 0.2 mg of boron per litre. Check the wavelength of the absorption maximum whenever a new batch of this reagent is used.
	2. Blank Test
	 Carry out a blank test by treating 25 mL of water as described in 4.1. Ensure that the blank value is in the range of 0.1 absorption units to 0.17 absorption units per 10 mm. If the absorption is higher, then check the reagents and the distilled water for their borate content. Measure it into three separate borate-free beakers (preferably poly tetrafluorethylene), 25 mL, 100 mL and 250mL aliquots of the distilled water. Make slightly alkaline by the addition of the same small (for example 200 mg) amount of calcium hydroxide to each. Evaporate the 100 mL and 250 mL aliquots to a volume of just less than 25 mL and adjust their volumes to precisely 25 mL by the addition of a little extra distilled water, as necessary. Carry out the procedure given in 4.1 on these aliquots. Carry out a blank determination with each of the aliquots. If borate is present in the distilled water, the borate found increases in proportion to the volume of the aliquot taken. Erratic results indicate external borate contamination. Relatively high but constant
	3. Prevention of Contamination:
	• As borate is widespread in the environment, significant
	contamination may occur during trace determinations. The

	following sources of contamination, and remedies, should be
	considered.
	• Borosilicate glassware should be avoided to the extent possible as it
	may leads to positive contamination. Borosilicate glass, well rinsed
	in hydrochloric acid, may be used for acidic solutions, but should
	never be used for neutral or alkaline solutions, or for prolonged
	storage at any pH value. (Borosilicate glassware previously used
	with alkaline solutions shall not be used without very thorough acid
	rinsing.) Polyethylene flasks and plastics pipettes are preferable.
	• Detergents and soaps used for glassware and lab coats should be
	borate free, and the use of towels and tissues, for drying shall be
	avoided.
	• Toiletries, talcum powder and cosmetics used by technicians often
	contain borate and should be avoided or removed, especially prior
	to undertaking accurate low-level determinations.
	• Water and reagents may contain borate and blanks should be
	carried out at least in duplicate and should agree.
	4. Calibration
	a. Zero mg/L to 0.20 mg/L of Boron Calibration Graph
	• To a series of six 25 mL one mark plastics flasks add respectively 0
	mL, 1 mL, 2 mL, 3 mL, 4 mL and 5 mL of boron standard solution-ii,
	concentrations of 0 mg; 0.04 mg; 0.08 mg; 0.12 mg; 0.16 mg and
	0.20 mg of boron per liter respectively. Analyze each standard
	solution as described in 1 measuring the absorbance values in a 50
	mm ontical nath length cell compared against distilled water
	Prepare a calibration graph by plotting the absorbance values
	against the known concentrations in milligrams of boron per liter
	for each standard.
	b. Zero mg/L to 1.00 mg/L of Boron Calibration Graph
	• Repeat the above calibration, using 0 mL, 5 mL, 10mL, 15 mL, 20 mL
	and 25 mL of boron standard solution-II (see 2.6) respectively to
	give concentrations of 0mg; 0.2mg; 0.4mg; 0.6mg; 0.8mg and 1.0mg
	of boron per liter respectively. Analyze each standard Solution as
	described in 4.1, but this time measuring the absorbance values
	using a 10mm optical path length cell compared against distilled
	water. Prepare a separate Calibration graph.
	c. Calculation of Factor f
	• It is essential that a linear calibration graph be achieved in both
	cases; if not then check the solutions and repeat the calibration.
	Calculate the reciprocal value for the slope & factor f, for each graph.
Calculation with units of	Calculate the borate content, in milligrams of boron per liter, from
expression	the formula
	$= \underbrace{(A1 - A0)f V 1 \max}_{V4}$
	Where
	VVIICI C

	A1 = absorbance of the sample
	A0= absorbance of the blank
	V1 = volume, in milliliters, of the sample
	V1Max = maximum volume, in milliliters, of the sample
	f = calibration factor, determined from the appropriate calibration curve
	(reciprocal value of the slope, in milligrams of boron per liter)
Inference	NA
Inference (Qualitative Analysis)	NA
Inference (Qualitative Analysis) Reference	NA IS: 13428 - 2005 (Reaffirmed- 2009) Packaged Natural Mineral water
Inference (Qualitative Analysis) Reference	NA IS: 13428 - 2005 (Reaffirmed- 2009) Packaged Natural Mineral water Specifications. Annex: H (Determination of Borate).
Inference (Qualitative Analysis) Reference Approved by	NA IS: 13428 - 2005 (Reaffirmed- 2009) Packaged Natural Mineral water Specifications. Annex: H (Determination of Borate). Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआई SSS0000 भारतीय साथ सुरक्ष उठेर मालठ फाविकरना Food Balary and Baconards Authority of Hoda स्वास्टर और परिवार उपल्याप्रा मंत्रालय Maristry of Healthy and Family Welfare	Determination of Boron by Carmine Method		
Method No.	FSSAI 14.013:2024	Revision No. & Date	0.0
Scope	Mineral water, Packag Drinking Water (Purified	ed Drinking Water (other 1)	than Mineral Water),
Caution	Follow all safety procedures while handling and disposing solutions. Wear laboratory apron, shoes, safety goggles and mask while working with chemicals. Perform work in fume hood while working with solvents. Refer		
Principle	In the presence of boron, a solution of carmine or carminic acid in concentrated sulfuric acid changes from a bright red or bluish red, depending on the concentration of boron present		
Apparatus/Instruments	Colorimetric equipment: One of the following is required: 1. Spectrophotometer, for use at 585 nm, with a minimum light path of 1 cm. 2. Filter photometer, equipped with an orange filter having a maximum transmittance near 585 nm, with a minimum light path of 1 cm.		
Materials and Reagents	 Standard boron solution Hydrochloric acid, HCI, conc. and 1 + 11 Sulfuric acid, H2S04, conc. Carmine reagent 		
Preparation of Reagents	 Store all reagents in polyethylene or boron-free containers Standard boron solution: Dilute 10.00 ml stock boron solution to 1000 mL with distilled water; 1.00 mL = 1.00 μg Boron. Hydrochloric acid, HCI, conc. and 1 + 11 Sulfuric acid, H2S04, conc. Carmine reagent: Dissolve 920 mg carmine N.F. 40, or carmine acid, in 1 L conc. H2S04, (If unable to zero spectrophotometer, dilute carmine 1+1 ·with conc. H2S04 to replace above reagent) 		
Sample Preparation			
Method of analysis	 Low-level samp If sample cont containing 2 to 1 NaOH plus a slig hot water bath. If necessary, de 550°C. Acidify co and triturate wit Centrifuge if nec concentrate into identically. Color developm Prepare a series 	ole concentration: ains less than 1mg Boro 20 μg B into platinum dish, ght excess, and evaporate to stroy any organic material coled residue (ignited or not) h a rubber policeman to disso essary to obtain a clear solut a small flask or 30mL test tu nent: of boron standard solutions f	n/L, pipet a portion make alkaline with 1N dryness on a steam or by ignition at 500 to with 2.5 mL 1 + 11 HCI olve. ion. Pipet 2.00mL clear be. Treat reagent blank

	and 1000 μ g) in 100 mL with distilled water.	
	• Pipet 2.00 mL of each standard solution into a small flask or 30 mL	
	test tube. Treat blank and calibration standards exactly as the	
	sample.	
	• Add 2 drops (0.1 mL) conc. HCI, carefully introduce 10.0 mL conc.	
	H2S04, mix, and let cool to room temperature.	
	• Add 10.0 mL carmine reagent, mix well, and after 45 to 60 min	
	measure absorbance at 585 nm in a cell of 1cm or longer light path,	
	using the blank as reference.	
	• To avoid error, make sure that no bubbles are present in the optical	
	cell while photometric readings are being made. Bubbles may	
	appear as a result of incomplete mixing of reagents.	
	• Because carmine reagent deteriorates, check calibration curve daily.	
Calculation with units of	mg Boron/L= μ <u>g B X D</u>	
expression	mL sample	
	Where: D = dilution correction.	
Inference	NA	
(Qualitative Analysis)		
Reference	1. IS: 13428 - 2005 (Reaffirmed- 2009) Packaged Natural Mineral	
	water Specifications. Annex: H (Determination of Borate).	
	2. АРНА 4500-В	
Approved by	Scientific Panel on Methods of Sampling and Analysis	

The set of	Determination of boron by Curcumin method		
Method No.	FSSAI 14.014:2024	Revision No. & Date	0.0
Scope	Mineral water, Package Drinking Water (Purified	ed Drinking Water (other d)	than Mineral Water),
Caution	Closely control such vari well as time and temper	ables as volumes and concer ature of drying. Use evapora	trations of reagents, as ting dishes identical in
	shape, size, and compo increasing the time incre	osition to insure equal evap eases intensity of the resultin	poration time because g color.
Principle	When a sample of water containing boron is acidified and evaporated in the presence of Curcumin, a red-colored product called rosocyanine is formed. The rosocyanine is taken a suitable solvent and the red color is compared with standards viewally or photometrically.		
Apparatus/Instruments	 a. Colorimetric equ b. Spectrophotome 1 cm. c. Filter photomete transmittance ne d. Evaporating dish platinum, or othe e. Water bath, set a f. Class-stoppered 	ipment: One of the following ter, for use at 540 nm, with a er, equipped with a green filte ear 540 nm, with a minimum tes, 100 to 150mL capacity, o er suitable material. It 55 \pm 2°C.	is required: minimum light path of er having a maximum light path of 1 cm. f high-silica glass, mL capacity
Materials and Reagents	g. Ion-exchange column, 50 cm long by 1.3 cm in diameter.a. Stock boron solution		
Materials and Reagents	 b. Standard boron solu b. Curcumin reager c. Curcumin reager d. Ethyl or isopropy e. Reagent for remo f. Strongly acidic ca g. Hydrochloric aci 	solution nt yl alcohol 95% oval of high hardness and cat ation- exchange resin d, HCl 1+5	ion interference:
Preparation of Reagents	 Store all reagents in poly a. Stock boron so H3B03, in distill Boron. Because reagent meeting stoppered to pre b. Standard borom 1000 mL with dis c. Curcumin reage gm oxalic acid in make up to 100 and filter if reage place of ethyl a stored in a refrig 	vethylene or boron-free contace olution: Dissolve 571.6 mg ed water and dilute to 1000 H3B03 loses weight on di g ACS specifications and k vent entrance of atmospheric solution: Dilute 10.00 ml s stilled water; 1.00 mL = 1.00 ent: Dissolve 40 mg finely gro n 80 mL 95% ethyl alcohol. mL with ethyl alcohol in a 10 ent is turbid (isopropyl alcoh lcohol). This reagent is stal erator.	ainers. anhydrous boric acid, mL; 1.00 mL = 100µg rying at 105°C, use a eep the bottle tightly c moisture. stock boron solution to µg Boron. ound Curcumin and 5.0 Add 4.2 mL conc. HCl, 00 mL volumetric flask, ol, 95% may be used in ble for several days if

Sample Preparation	Same as above
Sample Preparation Method of analysis	 Same as above Preparation of calibration curve: Pipet 0 (blank), 0.25, 0.50, 0.75, and 1.00 µg boron into evaporating dishes of the same type, shape, and size. Add distilled water to each standard to bring total volume to 1.0 mL. Add 4.0 mL curcumin reagent to each and swirl gently to mix contents thoroughly. Float dishes on a water bath set at 55 ± 2°C and let them remain for 80 min, which is usually sufficient for complete drying and removal of HCI. Keep drying time constant for standards and samples. After dishes cool to room temperature, add 10 mL 95% ethyl alcohol to each dish and stir gently with a polyethylene rod to insure complete dissolution of the red-colored product. Wash contents of dish into a 25mL volumetric flask, using 95% ethyl alcohol and mix thoroughly by inverting. Read absorbance of standards and samples at a wavelength of 540 nm after setting reagent blank at zero absorbance. The calibration curve is linear from 0 to 1.00 µg boron. Make photometric readings within 1 h of drying samples. Sample treatment: For waters containing 0.10 to 1.00 mg B/L, use 1.00mL sample. For waters containing more than 1.00 mg B/L, make an appropriate dilution with boron-free distilled water, so that a 1.00 mL portion contains approximately 0.50 µg boron. Pipet 1.00 mL sample or dilution into an evaporating dish. Unless the calibration curve is being determined at the same time, prepare
	 waters containing more than 1.00 mg B/L, make an appropriate dilution with boron-free distilled water, so that a 1.00 mL portion contains approximately 0.50 µg boron. Pipet 1.00 mL sample or dilution into an evaporating dish. Unless the calibration curve is being determined at the same time, prepare a blank and a standard containing 0.50 µg boron and run in
	 Conjunction with the sample. Proceed as in 1 above, beginning with Add 4.0 mL Curcumin reagent. If the final solution is turbid, filter through filter paper before reading absorbance. Calculate boron content from calibration curve. 3. Visual comparison: The photometric method may be adapted to visual estimation of low
	 boron concentrations, from 50 to 200 μg/L, as follows: Dilute the standard boron solution 1 + 3 with distilled water; 1 mL = 0.20μg Boron. Pipette 0, 0.05, 0.10, 0.15, and 0.20 μg B into evaporating dish indicated in 2 above. At the same time add an appropriate volume of sample (1.00 mL or portion diluted to 1.00 mL) to an identical evaporating dish. The total boron should be between 0.05 and 0.20μg. Proceed as in 1 above, beginning with "Add 4.0 mL curcumin reagent" Compare color of samples with standards within 1 hr of drying samples.

	4. Removal of high hardness and cation interference:		
	• Prepare an ion-exchange column of approximately 20 cm X 1.3 cm		
	diameter.		
	• Charge column with a strongly acidic cation-exchange resin.		
	Backwash column with distilled water to remove entrained air		
	bubbles.		
	• Keep the resin covered with liquid at all times. Pass 50 mL I + 5 HCI		
	through column at a rate of 0.2 mL acid/mL resin in column/min		
	and wash column free of acid with distilled water.		
	• Pipet 25 mL sample, or a smaller sample of known high boron		
	content diluted to 25mL, onto the resin column.		
	• Adjust rate flow to about 2 drops/s and collect effluent in a 50mL		
	volumetric flask. Wash column with small portions of distilled water		
	Mix and transfer 2.00 mL in evenerating dish. Add 4.0 mL Curcumin		
	• Mix and transfer 2.00 mL in evaporating dish. Add 4.0 mL curcumm reagent and complete the analysis as described above		
Calculation with units of	Use the following equation to calculate boron concentration from		
expression	absorbance readings:		
F	Mg B/L = A2 x C		
	A1 x S		
	Where:		
	A1 = absorbance of standard,		
	A2 = absorbance of sample,		
	$C = \mu g B \ln standard taken, and$		
	S = mL sample.		
Inference	NA		
(Qualitative Analysis)			
Kelerence	• 15: 13428 - 2005 (Keamrmed- 2009) Packaged Natural Mineral		
	ADUA 4500 P		
Annroved by	• AFRA 4500-D Scientific Panel on Methods of Sampling and Analysis		
Αρμιονεά σχ	Sciencine i anei on Methous of Samphing and Analysis		

VUDUCHUCHUCHUCHUCHUCHUCHUCHUCHUCHUCHUCHUCHU	Determination of Nitrate by Cadmium Reduction Method		
Method No.	FSSAI 14.015:2024	Revision No. & Date	0.0
Scope	Cadmium Reduction Method for determination of Ammoniacal Nitrogen in water prescribes cadmium reduction method for determination of Nitrate. This method is suitable for concentration below 0.1 mg per liter of nitrate nitrogen		
Caution	Higher concentrations of copper, iron etc lower the reduction efficiency. Add EDTA to remove this interference. Oil and grease & residual chlorine can interfere. Remove oil and grease by extraction with organic solvents and residual chlorine by adding sodium thiosulphate.		
Principle	Nitrate is reduced to nitrite in presence of cadmium. The nitrite produced is determined by diazotizing with sulphanilamide and coupling with N-(1naphthyl) ethylenediamine to from a highly colored azo dye which is measured colorimetrically.		
Apparatus/Instruments	 Reduction column - commercially available one or construct the column from a 100 mL volumetric pipette by removing the top portion. The column can also be constructed by two pieces of tubing joined end to end (join a 10 cm length of 3 cm internal diameter tubing to a 25 cm length of 3.5 cm Internal diameter tubing). A liquid leveling device is useful. Colorimeter- One of the following Spectrophotometer- for use near 543 nm with a light path of 1 cm or longer. Filter photometer - provided with a yellow green filter having maximum transmittance near 540 nm and a light path of 1 cm or longer. 		
Materials and Reagents	 Nitrate free v Copper cadm Sulphanilam N-(1-naphthy dihydrochlori Ammonium o Hydrochlorio Copper suph Stock nitrate Stock nitrite 	water nium granules ide reagent yl)-ethylenediamine dih ride) solution chloride – EDTA solution c acid 6 N ate solution solution solution	ydrochloride (NED
Preparation of Reagents	• Nitrate free wa with this water dilution.	Iter- the absorbance of a r should not exceed 0.01. Us	eagent blank prepared e for all solutions and

	• Copper cadmium granules – Wash 25 gm of 40-60 mesh cadmium granules with 6N hydrochloric acid and rinse with water. Swirl cadmium with 100 mL of 2 percent copper sulphate solution for 5 minutes or until blue color partially fades. Decant, repeat with fresh copper sulphate until a brown colloidal precipitate develops. Wash copper cadmium copiously with water (at least 10 times) to remove all precipitated copper.
	• Sulphanilamide reagent – Dissolve 5 gm of sulphanilamide in a mixture of 50 mL concentrated hydrochloric acid and 300 mL of water. Dilute to 500 mL with water. The reagent is stable for months
	 N-(1-naphthyl)-ethylenediamine dihydrochloride (NED dihydrochloride) solution- Dissolve 500 mg of NED dihydrochloride in 500mL of water. Store in dark colored bottle. Replace as soon as brown color develops. Ammonium chloride – EDTA solution- Dissolve 13 gm ammonium chloride 1.7 gm of disodium ethylenediamine tetracetate in 900 mL of water. Adjust pH to 8.5 with liquid ammonia and dilute to 1 liter. Dilute 300 mL of the above solution to 500 mL with water to get a dilute solution.
	Hydrochloric acid 6 N
	 Copper suphate solution- 2 percent (m/v).
	 Stock nitrate solution - Dissolve 0.7218 gm of dry potassium nitrate in water and dilute to 1000 mL. Preserve with 2 mL of chloroform per liter (1 mL = 100µg of nitrate nitrogen). Dilute 50 mL of stock nitrate solution to 500 mL with water to get standard solution 10 mL equal to 100 µg nitrate nitrogen
	 Stock nitrite solution. 1.0 mL equal to 10.0 µg intrate introgen. Stock nitrite solution- Dissolve 0.6072 of dried potassium nitrite in nitrate free water and make up to 1000 mL. (1 mL = 100µg of nitrite nitrogen). Preserve with 2 mL of chloroform and keep in a refrigerator. The solution is stable for 3months. Dilute 50.0 mL of above stock nitrite solution to 500 mL with nitrite
	free water (1 mL = $10\mu g$ of nitrite nitrogen).
Sample Preparation	If turbidity or suspended solids are present, remove by filtering through a 0.45 μ m pore diameter membrane or glass fiber filter. Adjust pH to between 7 & 9 as necessary. To 25.0 mL sample or a portion diluted to 25.0 mL add 75 mL of ammonium chloride- EDTA solution and mix. Pour mixed sample into column and collect at the rate of 7 to 10 mL/minute. Discard first 25 mL. Collect the rest in original sample flask. There is no need to wash the column between samples but if columns are not to be reused for several hours or longer, pour 50 mL dilute ammonium chloride - EDTA solution on to the top and let it pass through the system. Store Cu-Cd column in this

	solution and never allow it to dry.
	As soon as possible and not more than 15 min after reduction add 2.0 mL
	sulphanilamide reagent to 50 mL of sample. Let the reagent react for 2 to 8
	min. add 2 mL of NED dihydrochloric acid solution and mix immediately.
	Measure absorbance between 10 min to 2 hr at 540 nm against a distilled
	water reagent blank. Using the standard nitrate nitrogen solution prepare
	standards in the range of 0.05 to 1.0 mg of nitrate nitrogen per liter by
	diluting the following volumes of standards to 100 mL in volumetric flasks:
	0.5. 1.0. 2.0. 5.0 and 10.0 mL. Carry out reduction of standards exactly as
	described for samples. Compare at least one nitrite standard to a reduced
	nitrate standard at the same concentration to verify reduction column
	efficiency. Reactivate copper cadmium granules when reduction efficiency
	falls below 75 percent.
Method of analysis	Preparation of reduction column - insert a glass wool plug into the
	bottom of the reduction column and fill with water. Add sufficient copper
	cadmium granules to produce a column 18.5 cm long. Maintain water level
	above Cu-Cd granules to prevent entrapment of air. Wash column with 200
	mL dilute ammonium chloride EDTA solution. Activate column by passing,
	100 mL of a solution comprising of 25 mL of 1.0 mg nitrogen (nitrate) per
	liter standard and 75 mL of ammonium chloride EDTA solution, through it,
	at 7 to 10 mL/ minute.
Calculation with units of	Obtain a standard curve by plotting absorbance at standards against nitrate
expression	nitrogen concentration, compute sample concentration directly from
	standard curve report as milligrams of oxidized nitrogen per liter(sum of
	nitrate nitrogen plus nitrite nitrogen) unless the concentration of nitrite
	nitrogen is separately determined and corrected for .
Inference	Higher concentrations of copper, iron etc. lower the reduction efficiency.
(Qualitative Analysis)	Add EDTA to remove this interference. Oil and grease & residual chlorine
	can interfere. Remove oil and grease by extraction with organic solvents
	and residual chlorine by adding sodium thiosulphate.
Reference	АРНА 4500-В
A	
Approved by	Scientific Panel on Methods of Sampling and Analysis

VUDUALUATION VIDUALUATION VIDUALUATION AND AND AND AND AND AND AND AND AND AN	Determination of Nitrate by Chromotropic Acid Method		
Method No.	FSSAI 14.016:2024	Revision No. & Date	0.0
Scope	This method is suitable nitrogen.	for concentration below 0.1	mg per liter of nitrate
Caution	Residual chlorine, certa chromotropic acid. Addi	in oxidants and nitrites yie tion of sulphite removes inte	eld yellow colour with erference from residual
	chlorine and oxidants. U detectable quantity is 50	Jrea coverts nitrites to nitro) µg of nitrate nitrogen per lit	gen gas. The minimum cre.
Principle	Two moles of nitrate nit form a yellow reaction p	rogen react with one mole o roduct having maximum abs	f chromotropic acid to orbance at 410 nm.
Apparatus/Instruments	Spectrophotometer- for	use of 410 nm and with a	light path of 1 cm or
	Photometer- having max path of 1 cm or longer a	ximum transmittance at 410 nd equipped with violet filter	nm and having a light r.
Materials and Reagents	Nitrate free water Stock nitrate solution		
	Antimony reagent	1	
	Chromotropic acid reage	ent	
	Sulphuric acid		
Preparation of Reagents	 Nitrate free water this water should Stock nitrate solutin water and dil per liter (1 mL = Standard nitrate 500 mL with water nitrogen. gm of anhydrous Antimony reagen 80 mL concentrate mL of iced water redissolve by heats Chromotropic acting and store in a lareagent solution sulphuric acid 	er-The absorbance of a reage d not exceed 0.01. Use for all ution – Dissolve 0.7218 gm o ute to 1000 mL preserve wi 100µg of nitrate nitrogen). solution- Dilute 50 mL of s ter to get standard solution 1 Sulphite urea reagent- Disso sodium sulphite in water an nt- Dissolve 500 mg antimo ated sulphuric acid. Cool an ater. If crystals from upo ating acid reagent- Dissolve 1 id crystals in 100 mL of conc prown bottle. Prepare every signifies the absence of nitra	ent blank prepared with solution and dilution. of dry potassium nitrate ith 2 mL of chloroform tock nitrate solution to .00 mL equal to 10.0 µg blve 5 gm of urea and 4 d dilute to 1000 mL. ny metal by heating in d cautiously add to 20 on standing overnight 100 mg of purified entrated sulphuric acid y 2 weeks. A colorless ate contamination from
Sample Prenaration	6. Sulphuric acid- c	oncentrate nitrate free.	t. filter suitably. Pinette
	2.0 mL portions of the s into dry 10 mL volumetr	tandard nitrate solutions san ic flasks.	nples and a water blank
Method of analysis	Prepare nitrate standard	ls in the range of 0.10 to 5.0	mg/L by diluting 0, 1.0,

	5.0 10, 25, 25, 40 and 50 mL of standard nitrate solution to 100 mL with
	water. If appreciable amount of suspended matter is present, filter suitably.
	Pipette 2.0 mL portions of the standard nitrate solutions samples and a
	water blank into dry 10 mL volumetric flasks. To each flask, add 1 drop of
	sulphite urea reagent. Place flask in tray of cold water (10 to 20 °C) and add
	2 mL of antimony reagent. Swirl flasks during addition of each reagent.
	After about 4 minutes in the bath, add 1 mL of chromotropic acid reagent,
	swirl and let stand in cooling bath for 3 minutes. Add concentrated
	sulphuric acid to bring volume near the 10 mL mark. Stopper the flasks and
	mix by inverting each flask four times. Let it stand for 45 minutes at room
	temperature and adjust volume to 10 mL with concentrated sulphuric acid.
	Perform final mixing very carefully and gently to avoid introducing gas
	bubbles. Read absorbance at 410 nm between 15 minutes and 24 hours
	after last volume adjustment. Use nitrate free water in the reference cell of
	the spectrophotometer.
Calculation with units of	Nitrate nitrogen (as NO3), mg/L= μ g of nitrate nitrogen in 10 mL final
expression	volume Volume in ml of sample taken for test
Inference	Residual chlorine, certain oxidants and nitrites yield yellow colour with
(Qualitative Analysis)	chromotropic acid. Addition of sulphite removes interference from residual
	chlorine and oxidants. Urea coverts nitrites to nitrogen gas. The minimum
	detectable quantity is 50 μ g of nitrate nitrogen per litre.
Reference	IS 3025 (part 34) 1998: (Reaffirmed 2003) - Methods of Sampling and Test
	(Physical and chemical) for water and Waste Water: Nitrogen.
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआइ 	Determination of Nitrate by Devarda's Alloy Reduction Method		
Method No.	FSSAI 14.017:2024	Revision No. & Date	0.0
Scope	This method comprises of Nesslerization M Titrimetric Meth The above two represent and nitrite. To get n subtract.	of ethod od at the ammonia produced fro itrate nitrogen determine	om reduction of nitrate nitrite separately and
Caution	Ammonia is to be removed from sample by preliminary distillation. Nitrite also gets reduced to ammonia by this method. Therefore, a separate determination is made for nitrite and subtracts the result. This method is not recommended for levels of nitrate nitrogen below 2 mg/L		
Principle	The nitrate and nitrite is in the presence of the formed distils and is tra ammonia can be de acidimetrically. This m nitrite nitrogen	reduced to ammonia under reducing agent (Devarda's pped in a receiving flask cor etermined either by dire ethod is recommended for	hot alkaline conditions Alloy). The ammonia ntaining boric acid. The ect nesslerization or nitrate nitrogen and
Apparatus/Instruments	 Distillation asser Measuring scoop Spectrophotome The photometer 	nbly- Kjeldahl assembly is su - to contain 1 gm of Devarda ter or photometer- suitable should be equipped with a b	itable 's alloy for use at 400-425 nm. lue filter.
Materials and Reagents	 Ammonia free water Borate buffer solution Sodium hydroxide Devarda's alloy 		
Preparation of Reagents	 Ammonia free w. Borate buffer so 500 mL of 0.025 Na2B107.H2O) a Sodium hydroxid Devarda's alloy percent Zn)- 20 mitrogen Mixed indicator in 100 mL 95% methylene blue Combine these tw Indicating boric ammonia free w dilute to 1 liter Standard sulphus 	ater lution – add 88 mL of 0.1 M M sodium tetra borate (50 g and make up to 1litre le- 6 N (An alloy of 50 percent Cu mesh or smaller containing l solution – Dissolve 200 mg o 6ethyl or isopropyl alcohol in 50 mL of 95 % ethyl wo. Prepare monthly acid solution - dissolve 20 vater, add 10 mL of mixed ric acid titrant – 0.02 N (1mL	N sodium hydroxide to gm Na2B107 or 9.5 gm , 45 percent Al and 5 less than 0.005 percent of methyl red indicator l. Dissolve 100 mg of or isopropyl alcohol. gm hydroboric acid in indicator solution and =280 µg of nitrogen)

	 Nessler's reagent- Dissolve 100 gm of mercuric iodide and 70 gm of potassium iodide in a small quantity of water and add this mixture slowly with stirring to a cool solution of 160 gm of sodium hydroxide dissolved in 500 mL of water. Dilute to 1 liter. Store in brown rubber stopper glass bottle. Reagent is stable up to one year. It is toxic and so avoid ingestion. Stock ammonia solution- Dissolve 3.819 gm of anhydrous
	ammonium chloride in water and dilute to 1 liter (1.00 mL = 1.00 mg of nitrogen = 1.22 mg of ammonia). 4.6.3 Standard ammonia solution- Dilute 10.00 mL of stock solution to 1000 mL with water (1.00 mL = $12.2 \mu g$ of ammonia = $10.0 \mu g$ of N).
Sample Preparation	If appreciable amount of suspended matter is present, filter suitably .
Method of analysis	If ammonia has not been determined by a method involving preliminary distillation dilute a portion of the sample to 500 mL with ammonia free water. Add 25 mL of borate buffer and adjust to pH 9. 5 with 6 N sodium hydroxide using a pH meter or short-range pH paper. Distil 250 to 300 mL into a dry receiving flask and discard. Make sure that the last part of the distillation is conducted with condenser tip out of the liquid in receiving flask. To the residue after removing ammonia, add 1 gm of Devarda's alloy and sufficient ammonia- free distilled water to bring total volume to 350 mL. Place in a receiving flask of 50 mL boric acid absorbent for each milligram of nitrate nitrogen in sample. Immerse the end of condenser in the absorbent. Heat distillation flask until boiling or vigorous bubbling occurs. Reduce heat and distil at the rate of 5 to 10 mL/min until at least 150 mL distillate have been collected. Lower receiver so that liquid is below the end of the condenser and continue distillation for 1 to 2 minutes to cleanse condenser. Determine ammoniacal nitrogen either by nesslerization or titration with standard strong acid as given in Nesslerization or Titrimetric Method.
Calculation with units of expression	Nesslerization Method Ammoniacal Nitrogen (NH3 - N), mg/L = (A X B)/ (V X C)
	Where $A = ug of ammoniacal nitrogen (51 mL of final volume):$
	B = total volume of distillate collected, in mL, including acid
	absorbent;
	C = volume distillate taken for nesslerization in mL, and V =
	volume in mL of sample taken for test.
	Titrimetric Method Ammoniacal nitrogen (NH3 - N), mg/L = (A- B) X 280/V

	Where
	A = volume in mL of sulphuric acid titrated for sample
	B = volume in mL of sulphuric acid titrated for blank, and
	V = volume in mL of sample taken for test.
	The above two represent the ammonia produced from
	reduction of nitrate and nitrite. To get nitrate nitrogen
	determine nitrite separately and subtract.
Inference	Ammonia is to be removed from sample by preliminary distillation. Nitrite
(Qualitative Analysis)	also gets reduced to ammonia by this method. Therefore, a separate
	determination is made for nitrite and subtracts the result. This method is
	not recommended for levels of nitrate nitrogen below 2 mg/L.
Reference	• IS 3025 (part 34) 1998: (Reaffirmed 2003) - Methods of Sampling and
	Test (Physical and chemical) for water and Waste Water: Nitrogen.
	• APHA 4500 NO3
Approved by	Scientific Panel on Methods of Sampling and Analysis

UNDERVERVENCE UNDERVERVENCE WITCHING AND GREAT PARTY AND GREAT Food Balany and Greatoria Automatry of India Automatical Automatic Automatical Party Ministry of Health and Party Welfare	Determination of Chloride in water by Argentometric method		
Method No.	FSSAI 14.018:2024 Revision No. & Date 0.0		0.0
Scope	The presence of chloride in natural waters can be attributed to dissolution of salt deposits, discharges of effluents from chemical industries, oil well operations and seawater intrusion in coastal areas. Each of these sources may result in local contamination of both surface water and groundwater. The salty taste produces by chloride depends on the chemical compositions of the water. A concentration of 250 mg/L may be detected in some waters containing sodium ions. On the other hand, the typical salty taste may be absent in water containing 1000mg/L chloride when calcium and magnesium ions are predominant. High chloride content may harm pipes and structures as well as agricultural plants. This method prescribes the determination of chloride. This method is suitable for use in relatively clear waters when 0.15 to 10mg of chloride is		
Caution	present in the portion titrated.Bromide, iodide and cyanide register equivalent chloride concentrations.Sulphite, thiosulphate and sulphide ions interfere but can be removed by treatment with hydrogen peroxide. Orthophosphates in excess of 25mg/L		
Principle	In a neutral or slightly alkaline solution, potassium chromate can indicate the end point of the silver nitrate titration of chloride. Silver chloride is precipitated before red silver chromate is formed.		
Apparatus/Instruments	1. Erlenmeyer flask — 2	250 mL.	
Materials and Reagents	 Potassium chromate silver nitrate sodium chloride Aluminium hydroxide Phenolphthalein indi Sodium hydroxide Sulphuric acid Hydrogen peroxide 	le icator	
Preparation of Reagents	 Potassium chromate indicator solution — Dissolve 50 gm of potassium chromate in a little distilled water. Add silver nitrate solution until a definite red precipitate is formed. Let it stand for 12 hr, filter and dilute to 1 liter with distilled water. Standard silver nitrate titrant —0.0141 N. Dissolve 2.395 gm of silver nitrate in distilled water and dilute to 1 liter. Standardize account 		

	0.0141N sodium chloride solution. 1.00 mL = 500 μ g of chloride.
	Store in a brown bottle.
	3. Standard sodium chloride solution — 0.0141 N. Dissolve 824.0 mg of
	sodium chloride (dried at 140°C) in distilled water and dilute to 1
	liter. 1 mL = 500 µg ofchloride.
	4. Aluminium hydroxide suspension — Dissolve 1.25 gm of aluminum
	potassium sulphate or aluminium ammonium sulphate [AlK (S04)2
	.12H2O or Al NH4 (SO4)2.12H2O] in 1 liter of distilled water. Warm
	to 60°C and add 55 mL of concentrated ammonium hydroxide slowly
	with stirring. Let it stand for 1 hr, transfer to a large bottleand wash
	precipitate by successive additions, with thorough mixing and
	decanting with distilled water, until free from chloride. When freshly
	prepared, the suspension occupies a volume of about 1 liter.
	5. Phenolphthalein indicator solution
	6. Sodium hydroxide- 1 N
	7. Sulphuric acid -1N
	8. Hydrogen peroxide - 30 percent
Sample Preparation	Use 100 mL sample or a suitable portion diluted to 100 mL. If the sample is
	highly colored, add 3 mL of aluminium hydroxide suspension, mix, let settle
	and filter.
Method of analysis	1. If sulphide, sulphite or thiosulphate is present, add 1 mL of hydrogen
	peroxide and stir for 1 minute. Directly titrate the samples in the pH
	2. Adjust sample pH to 7-10 with sulphuric acid or sodium hydroxide if it
	is not in the range.
	3. Add 1.0 mL of potassium chromate indicator solution.
	4. Intrate with standard sliver nitrate solution to a pinkish yellow end point. Standardize silver nitrate solution and establish reagent blank
	value by titration method.
Calculation with units of	Chloride, mg/L = $(01 - 01) \times 100$
expression	Where
	V1 = Volume in mL of silver nitrate used by the sample
	V2 = Volume in mL of Silver nitrate used in the blank titration V3= volume
	in mL of sample taken for titration
Interference	Bromide, iodide and cyanide register equivalent chloride concentrations.
	Sulphite, thiosulphate and sulphide ions interfere but can be removed by
	treatment with hydrogen peroxide. Orthophosphates in excess of 25mg/L
	interfere. Iron in excess of 10mg/I interferes by masking the end point.

Reference	 IS: 3025 (Part 32) – 1988 (Reaffirmed 2003)- Methods of Sampling and Test (Physical and chemical) for water and Waste Water : Chloride APHA 4500-Cl
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआई SSS 2000 Weifle बाद मुस्ता-वेर मानक प्राधिकरण Food Salety and Skonaula Authority of India करायस्थ और परीवार दारगरमांग मेनालय Ministry of Health and Family Wetlaw		Determination of Chloride by Potentiometric Method		
Method No.	FSSA	I 14.019:2024	Revision No. & Date	0.0
Scope	This suita	This method prescribes the determination of chloride. This method is suitable for use in relatively clear waters.		
Caution	Iodide and bromide also are titrated as chloride. Ferricyanide causes high results and must be removed. Chromate and dichromate interfere and should be reduced to the chromic state or removed. Ferric iron interferes if present in an amount substantially higher than the amount of chloride. Chromic ion, ferrous ion, and phosphate do not interfere. Grossly contaminated samples usually require pretreatment where contamination is minor, some contaminants can be destroyed simply by adding nitric acid.			
Principle	Chloride is determined by potentiometric titration silver nitrate solution with a glass and silver-silver .chloride electrode system. During titration an electronic voltmeter used to detect the change in potential between the two electrodes. The end point of the titration is that instrument reading at which the greatest change in voltage has occurred for a small and constant increment of silver nitrate added.			
Apparatus/Instruments	 Glass and silver-silver chloride electrodes: Prepare in the laboratory or purchase a silver electrode coated with AgCl for use with specified instruments. Instructions on use and care of electrodes are supplied by the manufacturer. Electronic voltmeter, to measure potential difference between electrodes: A pH meter may be converted to this use by substituting the appropriate electrode. Mechanical stirrer, with plastic-coated or glass impeller. 			
Materials and Reagents	Sodium chloride Nitric acid, HNO3 Sulfuric acid H2SO4 Hydrogen peroxide, H2O2, 30 % Sodium hydroxide			
Preparation of Reagents	 1.1 Standard Sodium chloride solution, 0.0141M (0.0141N): Dissolve 824.0 mg NaCl (dried at 140°C) in distilled water and dilute to 100 mL: 1.00 mL= 500 μg Cl⁻ 1.2 Nitric acid, HNO3, conc. 1.3 Standard silver nitrate titrant, 0.0141 (0.0141 N): Dissolve 2.395 gm AgNO3 in distilled water and dilute to 1000 mL. Standardize against NaCl by the procedure: 1.00 mL = 500 μg Cl⁻ 			

	1.4 Pretreatment reagents		
	1.4.1 Sulfuric acid H2SO4, 1+1		
	1.4.2 Hydrogen peroxide, H2O2, 30 %		
	1.4.3 Sodium hydroxide NaOH, 1N.		
Sample Preparation	Pipet 100.0 mL sample or a portion containing not more than 10 mg Cl, into a 250mL beaker. In the absence of interfering substances, proceed with above.		
	In the presence of organic compounds, sulfite, or other interferences (such as large amounts of ferric iron, cyanide, or sulfide) acidify sample with H2SO4, using litmus paper. Boil for 5 min to remove volatile compounds. Add more H2SO4, if necessary, to keep solution acidic. Add 3 mL H2O2 and boil for 15 min, adding chloride-free distilled water to keep the volume above 50 mL. Dilute to 100 mL, add NaOH solution dropwise until alkaline to litmus, then 10 drops in excess. Boil for 5 min, filter into a 250mL beaker, and wash precipitate and paper several times with hot distilled water.		
	Add conc. HNO3 drop wise until acidic to litmus paper, then 2.0 mL in excess. Cool and dilute to 100 mL if necessary. Immerse stirrer and electrodes and start stirrer. Make any necessary adjustments according to the manufacturer's instructions and set selector switch to appropriate setting for measuring the difference of potential between electrodes. Complete determination by titrating according to 4.1above. If an end-		
	point reading has been established from previous determination for similar samples and conditions, use this predetermined end point. For the most accurate work, make a blank titration by carrying chloride-free distilled water through the procedure.		
Method of analysis	1.1 Standardization: The various instruments that can be used in this determination differ in operating details; follow the manufacturer's instructions. Make necessary mechanical adjustments. Then, after allowing sufficient time for warm-up (10 min), balance internal electrical components to give an instrument setting of 0 mV or, if a pH meter is used, a pH reading		

	of 7.0.		
	1.1.1 Place 10.0 mL standard NaCl solution in a 250mL beaker dilutes to about 100 mL, and adds 2.0 mL conc HNO3 Immerse stirrer and electrodes.		
	1.1.2 Set instrument to desired range of mill volts or pH unit Start stirrer		
	1.1.3 Add standard AgN03 titrant, recording scale reading after each addition. At the start, large increments of AgN03 may be added; then, as the end point is approached, add smaller and equal increments (0.1 or 0.2 mL) at longer intervals, so the exact end point can be determined. Determine volume of AgN03 used at the point at which there is the greatest change in instrument reading per unit addition of AgN03.		
	1.1.4 Plot a differential titration curve if the exact endpoint cannot be determined by inspecting the data. Plot change in instrument reading for equal increments of AgNO3 against volume of AgNO3 added, using average of burette readings before and after each addition.		
Calculation with units of			
expression	$mg CI/L = (A - B) \times N \times 35450$		
	mL sample		
	Where		
	A = mL AgNO3,		
	B = mL blank, and		
	N = normality of titrant		
Interference	Ladida and bramida also are titrated as ablarida. Farrigranida sausas		
(Qualitative Analysis)	high results and must be removed. Chromate and dichromate interfere		
(Quantative marysis)	and should be reduced to the chromic state or removed. Ferric iron		
	interferes if present in an amount substantially higher than the amount		
	of chloride. Chromic ion, ferrous ion, and phosphate do not interfere.		
	Grossly contaminated samples usually require pretreatment where		
	contamination is minor, some contaminants can be destroyed simply by		
	adding nitric acid.		
Reference	 IS : 3025 (Part 32) – 1988 (Reaffirmed 2003)- Methods of Sampling and Test (Physical and chemical) for water and Waste Water : Chloride 		
Annroved by	APHA 4500-Cl Scientific Panel on Methods of Sampling and Analysis		
Αυμιύνεα υν			

WUNDER AND BARANCE AND	Determination of Chloride by Automated Ferricyanide Method			
Method No.	FSSAI 14.020:2024	Revision No. & Date	0.0	
Scope	The method is applica	ble to potable, surface, an	nd saline waters, and	
	domestic and industrial mg Cl/L; it can be extend	wastewaters. The concentral led by dilution.	ition range is 1 to 200	
Caution	Remove particulate ma	tter by filtration-or centrifu	gation before analysis.	
	Guard against contamin	ation from reagents, water,	glassware, and sample	
Principle	Thiocyanate ion is liber:	ated from mercuric thiocyan	ate by the formation of	
Thicipie	soluble mercuric chlorid	le. In the presence of ferric in	on, free thiocyanate ion	
	forms a highly colore	d ferric thiocyanate, of w	which the intensity is	
	proportional to the chlor	ride concentration.	5	
Apparatus/Instruments	Automated analytical eq	uipment: An example of the o	continuous-flow	
	analytical instrument co	nsists of the interchangeable	components shown in	
	the figure .			
Materials and Reagents	1. mercuric thiocyanate			
	2. ferric nitrate			
	3. Color reagent	Jution		
	5. Standard chlorid	e solutions		
Preparation of Reagents	1.1 Stock mercuric t	hiocyanate solution: Dissolve	e 4.17 gm Hg(SCN)2 in	
	about 500 mL methano	l, dilute to 1000 mL with m	ethanol, mix, and filter	
	through filter paper.			
	1.2 Stock ferric nitr	ate solution: Dissolve 202 g	gm Fe(NO3)3. 9H2O in	
	about 500mL distilled w	ater, then carefully add 21 m	L conc HNO3. Dilute to	
	amber bottle			
	amber pottle.			
	Fe(NO3)3 solution. Mix and dilute to 1000 mL with distilled water Add			
	0.5mL polyoxyethylene 23 lauryl ether			
	1.4 Stock chloride solution: Dissolve 1.6482 gm NaCI, dried at 140°C, in			
	distilled water and dilute to 1000 mL; $1.00 \text{ mL} = 1.00 \text{ mg Cl}$.			
	1.5 Standard chlori	de solutions: Prepare chlo	ride standards in the	
	desired concentration range, such as 1 to 200 mg/L, using stock chloride			
Comple Dreparation	solution.			
sample Preparation	set up manifold and	ionow general procedul	te described by the	
Method of analysis	Set up manifold and	follow general procedu	re described by the	
notice of unuryous	manufacturer.	Seneral procedul	the according the	

	Washwater G G 2.0 Wash to sampler Black 0.32 Sample O 10 turn O W 0.23 Air Sampler Gray 1.0 Color reagent Waste R R 0.8 Waste Proportioning pump Recorder or data system Fig: Flow scheme for automated chloride analysis.		
Calculation with units of	Prepare standard curves by plotting response of standards processed		
expression	through the manifold against chloride concentrations in standards. Compute sample chloride concentration by comparing sample response with standard curve.		
Interference	Remove particulate matter by filtration-or centrifugation before analysis. Guard against contamination from reagents, water, glassware, and sample preservation process. No chemical interferences are significant.		
Reference	 IS : 3025 (Part 32) – 1988 (Reaffirmed 2003)- Methods of Sampling and Test (Physical and chemical) for water and Waste Water : Chloride APHA 4500-Cl 		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

UUDE CONTRACT OF A CONTRACT O	Determination of Chloride by Mercuric Thiocyanate Flow Injection Analysis method			
Method No.	FSSAI 14.021:2024	Revision No. & Date	0.0	
Scope	Determination of Chlori	de in water by Mercuric Th	iocyanate Flow Injection	
	Analysis method			
Caution	Mercuric thiocyanate is t	toxic. Wear gloves!		
Principle	A water sample containi	ng chloride is injected into a	carrier stream to which	
	mercuric thiocyanate and ferric nitrate are added. The chloride complexes with the Hg(ll), displacing the thiocyanate anion, which forms the highly colored ferric thiocyanate complex anion. The resulting peaks absorbance is measured at 480 nm. The peak area is proportional to the concentration of chloride in the original sample			
Apparatus/Instruments	a. Flow injection ana	lysis equipment consisting o	f	
	b. FIA injection valve	with sample loop.		
	c. Multichannel prop	c. Multichannel proportioning pump.		
	d. FIA manifold with flow cell.			
	e. Absorbance detector, 480 nm, 10nm band pass.			
	f. Valve control and o	lata acquisition system.		
Materials and Reagents	a. Water			
	b. Mercuric thiocya	inate		
	d. chloride standar	d		
Preparation of Reagents	 a. Use reagent water (> b. Stock mercuric thio 4.17gm mercuric thio to mark with methan c. Stock ferric nitrate reaction 	10 mega ohm) to prepare ca cyanate solution: In a 1L v ocyanate, Hg(SCN)2, in about ol and mix. eagent, 0.5M: In a 1L volume	rrier and all solutions. volumetric flask, dissolve t 500 mL methanol. Dilute tric flask, dissolve 202 gm	
	ferric nitrate, Fe(NO3)3 .9H2O, in approximately 800 mL water. Add 25 mL conc. HNO3 and dilute to mark. Invert to mix			
	 d. Color reagent: In a thiocyanate solution mark with water. membrane filter. The prepared solution that e. Stock chloride standard grade godii 	500mL volumetric flask, m with 75 mL stock ferric nit Invert to mix. Vacuum fil the color reagent also is ava- at is stable for several month ard, 1000 mg Cl/L: In a 105° um ablerida. NaCL everyight	ix 75 mL stock mercuric rate reagent and dilute to ter through a 0.45 μm ailable as a commercially s. C oven, dry 3 gm primary	
	dissolve1.648 gm pri water. Dilute to mark f. Standard chloride so	mary standard grade sodium and invert to mix. lutions: Prepare chloride sta	ndards for the calibration	

	curve in the desired concentration range, using the stock standard (as		
	above), and diluting with water		
Sample Preparation	Set up a manifold and follow method supplied by manufacturer, or laboratory standard operating procedure for this method.		
Method of analysis	Set up a manifold equivalent to that in Figure and follow the method supplied by the manufacturer or laboratory standard operating procedure for this method.		
	Pump flow Color reagent 870 µL 1.0 Carrier 1.8 Sample Interference filter=480 nm		
Calculation with units of	Prepare standard curves by plotting absorbance of standards processed		
expression	through the manifold versus chloride concentration. The calibration curve		
_	gives a good fit to a second-order polynomial.		
Interference	Remove large or fibrous particulates by filtering sample through glass wool.		
(Qualitative Analysis)	Guard against contamination from reagents water, glassware, and the sample		
	preservation process. Substances such as sulfite and thiosulfate, which		
	reduce iron (llI) to iron (ll) and mercury (II) to mercury (I), can interfere.		
	Halides, which also form strong complexes with mercuric ion (e.g., Br ⁻ , I ⁻),		
	give a positive interference.		
Reference	 IS: 3025 (Part 32) – 1988 (Reaffirmed 2003)- Methods of Sampling and Test (Physical and chemical) for water and Waste Water : Chloride APHA 4500-Cl 		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

एफएसएसएआई Ssat	Determination of Magnesium by Calculation Method & Gravimetric Method		
भारतीय साद्य पुरक्षा और मानक प्रात्रिकरण Food Eality and Execution & Authority of India स्वारक्ष और परिपार करनाया में मंत्रायम Ministry of Health and Family Wettare			
Method No.	FSSAI 14.022:2024	Revision No. & Date	0.0
Scope	Magnesium occurs com	nonly in the minerals magne	tite and dolomite.
	Magnesium is used in a	lloys, pyrotechnics, flash ph	otography, drying
	agents, refractories, fe	ertilizers, pharmaceuticals,	and foods. The
	from magnesium are mo	es is Mg2+ The carbonate equive complicated than for calci	un and conditions
	for direct precipitation	of dolomite in natural water	s are not common.
	Important contributors	to the hardness of a water	, magnesium salts
	break down when heate	ed, forming scale in boilers. C	Chemical softening,
	reverse osmosis, ion e	xchange reduces magnesiu	m and associated
	hardness to acceptable l	evels.	
	Magnesium is an esser	itial element in chlorophyll	and in red blood
	Concentrations greater	than 125 mg/L also can ha	ve a cathartic and
	diuretic effect.	0,	
	The following methods a	are suitable for determinatio	n of Magnesium in
	water.		
Caution	The solution should be reasonably free from aluminum, calcium, iron,		
	manganese, silica, stro	ntium and suspended mati	ter. It should not
Principle	Calculation Method: Water sample containing Calcium as CaCO3 is		
	estimated and Total H	lardness is the sum of Ca	CO3 and MgCO3.
	Magnesium hardness is	determined by subtracting	Calcium hardness
	from total hardness.		
	Gravimetric Metho	d : Diammonium hydro	ogen phosphate
	quantitatively precipitates magnesium in ammoniacal solution as		
	magnesium ammonium phosphate. The precipitate isignited and		
	weighed as magnesium pyrophosphate. Below 1 mg/L atomic		
Annaratus /Instruments	absorption Spectrophotometric method is desirable.		
Apparatus/ instruments	Vacuum Pump or Ot	her Source of vacuum	
	Filter Flasks		
	Filter Crucibles – medium porosity; 30 Ml		
Materials and Reagents	Gravimetric Method		
	1. Methyl Red India	cator	
	2. Hydrochloric acid 3. Ammonium Ovalate		
	4. Ammonium Hvd	roxide	
	5. Nitric Acid- Conc	entrated	
	6. Diammonium hy	drogen phosphate	
	7. Urea		

Preparation of Reagents	Gravimetric Method		
	1. Methyl Red Indicator Solution: Dissolve 100 mg of methyl red		
	sodium salt in distilled water and dilute to 100 Ml		
	2. Hydrochloric acid: 1:1, 1:9 and 1:99		
	3. Ammonium Oxalate Solution: Dissolve 10gm (NH4)2 C2O4 +		
	H2O in 250mL distilled water. Filter if necessary		
	4. Ammonium Hydroxide- Concentrated- 1:19		
	5 Nitric Acid- Concentrated		
	6 Diammonium hydrogen phosphate solution Dissolve 30gm of		
	Diammonium nyurophosphate (NH4)2 HD04 in distilled water		
	and make up to 100 mJ		
	7. Ulea.		
Sample Propagation	Cravimatric Mathad		
Sample Preparation	Gravimetric Methou		
	• Pretreatment of Ponuted water and wastewater samples:		
	Mix the sample pretreated, if so required, and transfer a		
	suitable volume (50 to 100 mL) to 250 mL conical flask or a		
	beaker. Add 5 mL concentrated nitric acid and a few boiling		
	chips or glass beads. Bring to a slow boil and evaporate on a hot		
	plate to the lowest volume possible (about 10 to 20 mL) before		
	precipitation or salting occurs. Add 5 mL concentrated nitric		
	acid cover with a watch glass and heat to obtain a gentle		
	refluxing action. Continue heating and adding concentrated		
	nitric acid as necessary until digestion is complete as shown by		
	a light coloured clear solution. Do not let sample dry during		
	digestion Add 1 to 2 mL concentrated nitric acid and warm		
	slightly to dissolve any remaining residue Wash down beaker		
	walls and watch glass with water and then filter if pocessary		
	Transfor filtrate to 100 mL volumetric fleck with two 5 mL		
	I ransfer filtrate to 100 mL volumetric flask with two 5 mL		
	portions of water adding these risings to the volumetric flask.		
	Cool dilute to mark and mix thoroughly. Take portions of this		
	solution for the determination.		
	• Removal of calcium and other Metals as Oxalates: To 200		
	mL of the sample pretreated if so required containing about 50		
	mg of calcium, add a few drops of methyl red indicator and 1:1		
	hydrochloric acid. Sufficient acid must be present in the		
	solution WATER ANALYSIS 2016 89 to prevent the		
	precipitation of calcium oxalate when ammonium oxalate		
	solution is added. Introduce 50 mL of ammonium oxalate		
	solution and 15 gm of urea. Boil the solution cently until the		
	methyl red changes its colour to vellow. Filter the precipitate		
	and wash with small volume of cold water until free from		
	chlorido		

Method of analysis	To the combined filtrate and washings from 5.2 containing not more			
	than 60 mg magnesium add 50 mL of concentrated nitric acid and			
	evaporate carefully to dryness on a hot plate. Do not let reaction			
	become too violent during the later part of the evaporation stay in			
	constant attendance to avoid losses through spattering. Moisten			
	residues with 2 to 3 mL of concentrated hydrochloric acid. add. 20 mL			
	of distilled water warm filter and wash To the filtrate add 3 mL of			
	concentrated hydrochloric acid 2 to 3 drops of methyl red solution and			
	10 mL of (NH4)2HD04 solution. Cool and add concentrated ammonium			
	hydroxide drop by drop stirring constantly until color changes to			
	yellow, stir for 5minutes and add again 5mL of concentrated			
	yellow, stir for 5minutes and add again 5mL of concentrated			
	aminionium nyuroxide and sur vigorously for to minimore. Let it stand			
	overnight and litter unough inter paper. Wash with 1.17 annionium			
	nyaroxia itate thereweby and hum namer off cloudy allowing circulation			
	precipitate moroughly and burn paper on slowly, anowing chiculation			
	of air. Heat at about 500°C until residue is while. Ignite for 50 minutes			
	at 1100°C to constant mass.			
Calculation with units of	Calculation Mathody			
evnression	1 Calculate the Total hardness as follows: Analysis for Total			
Capitosion	Hardness is carried out at nH 10 using Frichrome Black T			
	indicator			
	Total hardness (CaCO3) mg/I = $[1000(V1 - V2)/V3]$ x CF			
	Where $V1 = volume in mL$ of the FDTA standard solution used			
	Where V1 = volume in mL of the EDTA standard solution used in the titration for the sample			
	V2 = volume in mL of the EDTA solution used in the titration for			
	blank.			
	V3 = volume in mL of the sample taken for the test			
	CF = X1/X2 correction factor for standardize ion of EDTA. X1 =			
	CF = X1/X2 correction factor for standardize ion of EDTA. X1 = volume in mL of standard calcium solution taken for			
	standardization $V2 = volume of mL of EDTA solution used in the$			
	Statiudi uization $AZ = volume of mil of D i A solution used in the$			
	2 Calculate the Calcium hardness as follows: Analysis for			
	2. Calcium is convised out at pU 12.14 using Datton & Dordon			
	Lalicium is carried out at pri 12-14 using ration \propto reader Indicator Calcium bardness (CaCO2) mg/I = [1000(V1			
	1100000000000000000000000000000000000			
	$V \Delta J / V \Delta J X U \Gamma$ Where $V \Delta = v \Delta v$ is mL of the EDTA standard solution used			
	where $v_1 = v_0$ where $v_1 = v_0$ where $v_1 = v_0$ and v_0 a			
	III the unitation for the EDTA solution used in the titration for $W^2 = waltime in mL$ of the EDTA solution used in the titration for			
	VZ - VOIUIIE III IIIL OI UIE ED IA SOIUUOII USEU III UIE UU auon ioi blank			
	Didlik. V_{2} = volume in mL of the complete low for the test			
	$V_3 = V_0 U_0 U_0 U_0 U_0 U_0 U_0 U_0 U_0 U_0 U$			
	$V_{1} = v_{1} V_{2}$ correction factor for standard calcium colution taken for			
	XI = VOIUME IN ML OF STANDARD CARCIUM SOLUTION LAKEN TO			
	Standardization and			
	XZ = volume of mL of EDTA solution used in the utration.			
	Calculate the Magnesium hardness as follows			
	Garculate the Magnesian nuraness as follows			

	Magnesium hardness = Total hardness - Calcium hardness (mg/L)		
	Magnesium (as Mg+2) = Magnesium hardness * 0.2428 mg/L		
	Gravimetric Method:		
	Calculation		
	Magnesium, mg/L= <u>M x218.4 x 103</u>		
	V		
	Where M= mass in mg of magnesium pyrophosphate, and		
	V= volume in mL of sample.		
Inference	NA		
(Qualitative Analysis)			
Reference	IS : 3025 (Part 46) – 1994 Methods of Sampling and Test (Physical and		
	chemical) for water and Waste Water		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

VUD VULVE VULVE VULVE VULVE VIENTIE entre auf gave auf a viente sufficience Food lateity and Gaveounds Automaty of Huda Retrease Adv Cultority are contrain Arianett Merristry of Haadth and Parmity Workswo	Determination of Fluoride by SPANDS method			
Method No.	FSSAI 14.023:2024	Revision No. & Date	0.0	
Scope	Mineral water, Package Drinking Water (Purified	ed Drinking Water (other 1)	than Mineral Water),	
Caution	Volumetric measurement of sample and reagent is extremely important to analytical accuracy. Use samples and standards at the same temperature or at least within 2 °C. Maintain constant temperature throughout the color development period. Prepare different calibration curves for different temperature ranges.			
Principle	The SPADNS colorimetric method is based on the reaction between fluoride and a zirconium-dye lake. Fluoride reacts with the dye lake, dissociating a portion of it into a colorless complex anion (ZrF_6^{2-}) and the dye. As the amount of fluoride increases, the color produced becomes progressively lighter. The reaction rate between fluoride and zirconium ions is influenced greatly by the acidity of the reaction mixture. If the proportion of acid in the reagent is increased, the reaction can be made almost instantaneous. Under such conditions, however, the effect of various ions differs from that in the conventional alizarin methods. The selection of dye for this rapid fluoride method is governed largely by the resulting tolerance to these ions			
Apparatus/Instruments	 Colorimetric equipment: One of the following is required: a. Spectrophotometer, for use at 570 nm, providing a light path of at least 1 cm. b. Filter photometer, providing a light path of at least 1 cm and equipped with a greenish yellow filter having maximum transmittance at 550 to 580 nm 			
Materials and Reagents	a. Standard fluoride solution b. SPADNS solution c. Zirconyl-acid reagent d. Acid zirconyl-SPADNS reagent e. Reference solution f. Sodium arsenite solution			
Preparation of Reagents	 a. Standard fluorie to 1000 mL with solution: Dissolv reagent water an b. SPADNS solutio (parasulfopheny) also called 4,5-di 2,7naphthalened dilute to 500 mL protected from d 	de solution: Dilute 100 mL s reagent water; 1.00 mL = 10 e 221.0 mg anhydrous sodiur d dilute to 1000 mL; 1.00 mI n: Dissolve 958 mg SPADNS, lazo)-1,8-dihydroxy-3,6-nap hydroxy-3-(parasulfophenyls isulfonic acid trisodium salt, . This solution is stable for at lirect sunlight.	tock fluoride solution .0 μg F- (Stock fluoride m fluoride, NaF, in L = 100 mg F) sodium 2 hthalene disulfonate, azo)- in reagent water and least 1 year if	
	c. Zirconyl-acid reagent: Dissolve 133 mg zirconyl chloride			
---------------------------	--	--	--	--
	octahydrate, ZrOC12 • 8H2O, in about 25 mL reagent water. Add			
	350 mL conc HCl and dilute to 500 mL with reagent water.			
	d. Acid zirconyl-SPADNS reagent: Mix equal volumes of SPADNS			
	solution and zirconyl-acid reagent. The combined reagent is stable			
	for at least 2 years.			
	e. Reference solution: Add 10 mL SPADNS solution to 100 mL			
	reagent water. Dilute 7 mL conc HCl to 10 mL and add to the diluted			
	SPADNS solution. The resulting solution, used for setting the			
	instrument reference point (zero), is stable for at least 1 year.			
	Alternatively, use a prepared standard of 0 mg/L F ⁻ as a reference.			
	f. Sodium arsenite solution: Dissolve 5.0 g NaAsO ₂ and dilute			
	to 1 L with reagent water. (Caution: Toxic-avoid ingestion)			
Sample Preparation	If the sample contains residual chlorine remove it by adding 1 dron (0.05			
Sumple i repututon	mL) NaAsO ₂ solution per 0.1 mg residual chlorine and mix. (Sodium arsenite			
	concentrations of 1300 mg/L produce an error of 0 l mg/L at 1 0 mg/L F-			
Mothod of analysis	Droparation of standard curve: Dropare fluoride standards			
Method of analysis	a. In the range of 0 to 1.40 mg/L E, by diluting appropriate			
	augustition of standard fluoride solution to 50 mL with			
	quantities of standard futoride solution to 50 mL with			
	reagent water. Pipet 5.00 mL each of SPADNS solution and			
	zirconyl-acid reagent, or 10.00 mL mixed acid-zirconyl-			
	SPADNS reagent, to each standard and mix well. Avoid			
	contamination. Set the photometer to zero absorbance with			
	the reference solution and obtain absorbance readings of the			
	standards. Plot a curve of the milligrams fluoride-			
	absorbance relationship. Prepare a new standard curve			
	whenever a fresh reagent is made or a different standard			
	temperature is desired. As an alternative to using a			
	reference, set the photometer at sorne convenient point			
	(0.300 or 0.500 absorbance) with the prepared O mg/L p-			
	standard			
	b. Color development: Use a 50.0-mL sample or a portion			
	diluted to 50 mL with reagent water. Adjust the sample			
	temperature to that used for the standard curve. Add 5.00			
	mL each of SPADNS solution and zirconvl-acid reagent, or			
	10.00 mL acid-zirconyl-SPADNS reagent. Mix well and read			
	the absorbance, first setting the reference point of the			
	nhotometer as above. If the absorbance falls beyond the			
	range of the standard curve repeat using a diluted sample			
Calculation with units of	$m\sigma/LF = A \times B$			
avnrassion	$\frac{\text{mg/LT} - A}{\text{mL sample}} \frac{A}{C}$			
expression	where			
	$A = \mu g E_{-}$ determined from plotted curve			
	R = final values of diluted cample (mL) and			
	B = TINAL VOLUME OF ALLUEA SAMPLE (mL), and			
	C – volume of unuted sample used for color development (mL).			
	When the prepared Ω mg/L n standard is used to set the photometer			
	when the prepared U mg/L p- standard is used to set the photometer,			

	alternatively calculate fluoride concentration as follows;		
	$mg/LF = A_0 - A_X$		
	$\overline{A_0 - A_1}$		
	where:		
	Ao = absorbance of the prepared 0 mg/L F- standard,		
	Ax= absorbance of the prepared sample, and		
	A_i = absorbance of a prepared 1.0 mg/L F- standard.		
Inference	NA		
(Qualitative Analysis)			
Reference	APHA 4500 – F-		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

एफएसएसएआई	Determination of Fluoride by Zirconium alizarin method with and				
Issai	without distillation				
भारतीय साध्य मुरस्त और मानक प्राधिकरण Food Ealthy and Savalanda Authority of Inda स्वाय्य और परिवार राज्याया संवायय					
Ministry of Health and Family Welfare					
Method No.	FSSAI 14.024:2024	Revision No. & Date	0.0		
	Eluarida iana hava dual	aignificant in water complies	Uigh concentration of		
Scope	Figure for the second s	is (disfigurement of the test	h) At the same time a		
	r- causes dental fluorosis (disfigurement of the teeth). At the same time, a				
	concentration less than 0.8 mg/L results in dental carles. Hence it is assential to maintain the $E_{\rm c}$ concentration between 0.9 to 1.0 mg/L in				
	drinking water Among	the many methods suggester	d for the determination		
	fluoride ion in water.	the Colorimetric method (SPANDS) and the ion		
	selective electrode met	hod are the most satisfact	ory and applicable to		
	variety of samples. Beca	use all of the Colorimetric	methods are subject to		
	errors due to presence of	of interfering ions, it may be	necessary to distill the		
	sample before making th	e fluoride estimation.	-		
	This standard method p	rescribes three methods of te	est for determination of		
	fluoride content in water	r.			
	Zirconium alizar	in method without distillatio	n		
	Zirconium alizar	in method with distillation			
	Electrochemical probe method				
Caution	Iron, alkalinity, phosphates interfere, if present above the values given in				
	Table - 1. Interference of free residual chlorine can be removed by adding				
	sodium arsenite. Alumin	nium gives negative error b	ecause of formation of		
	Al-F complex which with	draws fluoride from the read	ction of zirconium.		
Principle	The color (red to yellow	with increasing concentration	on of fluoride) obtained		
	with zirconium alizarin	reagent is matched against	that produced with a		
	series of standard fluorio	de solutions.			
Apparatus/Instruments	• Nessler Tubes, 1	00 mL capacity.			
	Distillation Appa	iratus - The distillation appa	ratus shall consist of a		
	claisen flask of 100 mL capacity, a large flask for generating steam				
	and an efficient condenser. The main neck of the Claisen flask shall				
	a thermometer	and a glass tube (for conn	acting with the steep		
	a thermometer and a glass tube (for connecting with the steam supply) both the thermometer and the tube system ding almost to the				
	bottom of the fla	sk. The side neck of the flas	k shall be closed with a		
	rubber stopper	and the side arm connecte	d with the condenser.		
	Steam shall be	generated from water made	e alkaline with sodium		
	hydroxide. Local	overheating of the Claisen fl	ask shall be avoided by		
	use of an asbest	os board with a hold which	shall fit closely to the		
	lower surface of	the flask.			
Materials and Reagents	Sodium Thiosulp	hate			
	Standard Sodium	n Fluoride			
	Zirconium Alizar	in Reagent			
	Silver Sulphate				
	 Perchloric Acid — 60 percent. 				

	Phenolphthalein Indicator				
		 Sodium Hydroxide Solution — 10 percent w/v. 			
		Concentrated Sulphuric Acid			
Preparation of Reagents	1.	. Sodium Thiosulphate Solution — approximately 0.1 N. 1.5.2			
	2.	 Standard Sodium Fluoride Solution — Dissolve 0.221 gm of dry sodium fluoride in distilled water and make up to 1000 mL. Dilute 1000 mL of the solution to 1000 mL distilled water. One millilitre of this diluted solution contains 0.01 mg of fluoride (as F). The solution shall be kept in polyethylene or wax-lined glass bottles. 			
	3.	3. Zirconium Alizarin Reagent Dissolve 0.3 gm of zirconium oxychloride (ZrOCl2.8H2O), or 0.25 gm of zirconium oxynitrate [ZrO(NO3)2.2H2O] in 50 mL of distilled water. Dissolve 0.07 gm of alizarin sodium monosulphonate (alizarin S) in another 50 mL quantity of distilled water and add the latter solution slowly to the zirconium solution with continuous stirring. The resulting solution clears on standing for a few minutes.			
	4.	4. Dilute 112 mL of concentrated hydrochloric acid to 500 mL with distilled water. Also add 37 mL of concentrated sulphuric acid to 400mL of distilled water and then dilute to 500 mL. Mix the two diluted acids when cool.			
	5.	5. Dilute the clear zirconium solution prepared in 3. to 1000 mL with the mixed acid solution prepared in 4. The reagent is at first red, but within an hour it changes to orange-yellow and is ready for use. The solution shall be stored in the dark, if kept in a refrigerator it is stable for 2 to 3 months. When 5 mL of this reagent is added to 100 mL of distilled water containing no fluorides, it soon turns pink. Fluorides discharge the pink colour of the lake so that the solution acquires a more yellow tint.			
	6. 7. 8. 9.	 Silver Sulphate Perchloric Acid — 60 percent. Phenolphthalein Indicator Sodium Hydroxide Solution — 10 percent w/v. Concentrated Sulphuric Acid 			
Sample Preparation	Th rel int	The method without distillation and electrochemical probe method is reliable for samples of potable and lightly polluted water in which the interfering substances are not in excess of the limits given below:			
	C	hlorides (as CI)	2000 mg/L		
	S	ulphates (as SO4)	300 mg/L		
	A	Ikalinity (as CaCO3)	400 mg/L		

	Iron (as Fe)	2 mg/L		
	Aluminium (as Al)	0.5 mg/L	-	
	Phosphates (as PO4)	5 mg/L		
	Where the sample is highly coloured in excess of the limits given above, th or the sample shall be appropriately of unknown composition or where g with distillation shall be employed. The sample shall not contain fre dechlorinated with a slight excess of use.	l or turbid or has interfering substand ne method with distillation shall be us y diluted before this test. With samp greater accuracy is needed, the meth ee chlorine; if necessary, it shall of sodium thiosulphate solution befo	ed les od be ore	
Method of analysis	Method without Distillation			
	Take 100 mL of the clear sample and a series of dilutions of standar sodium fluoride solution in 100 mL of distilled water in Nessler tubes ar add 5.0 mL of the zirconium alizarin reagent to each. The sample ar standards shall be at the same temperature to within 1°C to 2°C. Mix ar compare the colours after standing for 1 hr exactly. Note the volume standard sodium fluoride solution contained in the tube, with which match with the sample under test is obtained.			
	Method with Distillation Introduce into the Claisen flask a m glass beads, 0.2 gm of silver sulphat Perchloric acid. Heat the flask und 125°C, connect to the steam supply the distillation proceeds at a temper in 25 to 35 min and steam out th distillation. Discard the first distillate the fluorides in it by the method give not exceed 0.0015 mg and shall be a 150 mL fraction.	number of fragments of Pyrex glass re, 7 mL of distilled water and 15 mL til the temperature reaches 120°C and regulate the gas and steam so th rature of 137°C to 140°C. Distil 150 m the condenser towards the end of t e. Distil a further 150mL and determi en above. The figure for this blank sh approximately constant for any furth	or of to nat he all ner	
	Make 150 mL of the sample alkali sodium hydroxide solution, add a few mL. When cool, transfer quantitative add 15 mL of concentrated sulphuri aliquot exceeds 5 mg, add about 5 m of chlorine. Connect up the apparatus the fluoride content of the total 150 m	ine to phenolphthalein indicator waw drops in excess and concentrate to ely to the distillation flask and carefu ic acid. If the amount of chloride in t ng of silver sulphate for each milligra s and distil 150 mL as above. Determi mL of distillate.	ith 20 lly he am	

Calculation with units of	Method without Distillation		
expression	Fluoride (as F), mg/L = $\frac{1000W}{V}$		
	W - Weight of fluorides (as F) in the standard solution matched by the sample in mg;		
	V - Volume of the sample taken in mL.		
	Method with Distillation		
	Fluoride (as F), mg/L = $\frac{1000W}{V}$		
	W = weight of fluorides (as F) in the standard solution matched by 150 mL of the Distillate, in mg		
	V= volume of the sample taken in mL		
Inference	NA		
(Qualitative Analysis)			
Reference	• IS : 3025 (Part 60) – 2008 Methods of Sampling and Test (Physical and		
	chemical) for water and Waste Water : Fluoride		
	• APHA 4500 F		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

एफएसएसएआइ SSSCOL Food Latty and Events to filosecti Food Latty and Events to filosecti Renew Jak Urdan Concenting Antonio Mensity of Health and Family Weldow	Determination of Fluoride by electrochemical probe method			
Method No.	FSSAI 14.025:2024	Revision No. & Date	0.0	
Scope	The electrochemical technique method is directly suitable for measuring fluoride concentrations from 0.2 mg/L to 2.0 g/L. After the addition of a known amount of fluoride, concentrations as low as 0.02 mg/L can be detected			
Caution	The electrode will respond directly to hydroxide ions. The formation of HF under acidic conditions will reduce the measured fluoride concentration. Therefore, buffer all test aliquots to a pH between 5 and 7 to prevent such interference. Cations such as calcium, magnesium, iron and aluminium form complexes with fluoride or precipitates to which the electrode does not respond. Therefore the buffer solution also contains trans- 1, 2-diaminocyclohexane-N,N,N',N' - tetraacetic acid (CDTA) as a decomplexing agent to free bound fluoride. The boron tetrafluoride anion, is not decomplexed by the addition of buffer			
Principle	When a fluoride ion-selective electrode comes into contact with an aqueous			
	solution containing fluoride ions, a potential difference develops between the measuring electrode and the reference electrode. The value of this potential difference is proportional to the logarithm of the value of the fluoride ion activity in accordance with the Nernst equation			
Apparatus/Instruments	 Millivolt Meter — a 1012Ω, capable of re Fluoride Ion-selective solutions, shall not concentration at 25° Reference Electrode 	Millivolt meter with an imposolving potential differences re Electrode — the e.m.f. res be less than 55 mV per dec C. Either a calomel electrod	edance of not less than of 0.1 mV or better. sponse, using standard rade change in fluoride le, filled with saturated	
	 potassium chloride (KCl) solution, or a silver/silver chloride electrode shall be used. 4. Measuring Cells — capacity 100 mL, made of polypropylene and fitted with a thermo stated jacket. 			
	5. Water Bath — capable of supplying water to the jacket of the measuring cell at a temperature of 25°C±0.2°C.			
	6. Magnetic Stirrer, with a polytetrafluoroethylene (PTFE) -coated stirring bar.			
	7. Polyethylene Beaker	, of capacity 100 mL.		
Materials and Reagents	 Purity of the Reagen Sodium Hydroxide (! Total Ionic Strength 	ts 5M) Adjustment Buffer (TISAB)		

	4.	Fluoride, Stock Solution, 1000 mg/L		
	5.	Fluoride, working standard		
Preparation of Reagents				
	1.	Purity of the Reagents —Unless specified otherwise, only pure chemicals and fluoride free distilled water shall be used in tests.		
	2.	Sodium Hydroxide (5M) — Dissolve cautiously 100 ± 0.5 gm of sodium hydroxide in water, cool and dilute to 500 mL.		
	3.	Total Ionic Strength Adjustment Buffer (TISAB) — Add 58 gm of sodium chloride (NaCI) and 57 mL of glacial acetic acid $[p(CH3C00H) = 1.05 g/mL]$ to 500 mL of water in a 1 liter beaker. Stir until dissolved. Add 150 mL of the sodium hydroxide solution and 4 gm of CDTA (trans-1, 2-diaminocyclohexane-N,N,N,N'tetraacetic acid). Continue stirring until all the solids have dissolved and adjust the solution to pH 5.2 with sodium hydroxide solution using a pH meter. Transfer to a 1000 mL one mark volumetric flask, make up to the mark with water and mix. The solution is stable for about 6 months, but do not use if precipitation occurs in solution.		
	4.	Fluoride, Stock Solution, 1000 mg/L - Dry a portion of sodium fluoride (NaF) at 150°C for 4 hr and cool in a desiccator. Dissolve 2.210 ± 0.001 gm of the dried material in water contained in a 1000mL one-mark volumetric flask. Make up to the mark with water and mix. Store the solution in a screw-capped polyethylene container.		
	5.	Fluoride, working standard solution-I, 10 mg/L - Pipette 10 mL of the fluoride stock solution into a 1000 mL one-mark volumetric flask. Make up to the mark with water and mix. Standard solutions should be stored in plastic bottles and are usable for one month.		
	6.	Fluoride, working standard solution-II, 5 mg/L - Pipette 5 mL of the fluoride stock solution into a 1000 mL one-mark volumetric flask and make up to the mark with water.		
	7.	Fluoride, working standard solution-III, 1 mg/L - Pipette 100 mL of the working standard solution I into a 1000 mL one-mark volumetric flask and make up to the mark with water.		
	8.	Fluoride, working standard solution-IV, 0.5 mg/L - Pipette 100mL of the working standard solution-II into a 1000 mL one-mark volumetric flask and make up to the mark with water.		
	9.	Fluoride, working standard solution-V, 0.2 mg/L - Pipette 20 mL of the working standard solution-I into a 1000 mL one-mark volumetric flask and make up to the mark with water.		

Sample Preparation	Please refer to the sample preparation section of Determination of Fluoride in water by Zirconium alizarin method without distillation.			
	METHOD NO : FSSAI 14.024:2024(Sample Preparation)			
	The method without distillation and electrochemical probe method is			
	interfering substances are not	interfering substances are not in excess of the limits given below:		
	Chlorides (as CI)	2000 mg/L		
	Sulphates (as SO4)	300 mg/L		
	Alkalinity (as CaCO3)	400 mg/L		
	Iron (as Fe)	2 mg/L		
	Aluminium (as Al)	0.5 mg/L		
	Phosphates (as PO4)	5 mg/L		
	in excess of the limits given all or the sample shall be approp of unknown composition or w with distillation shall be empl The sample shall not cont dechlorinated with a slight e use.	pove, the method with distillation shall be used priately diluted before this test. With samples where greater accuracy is needed, the method oyed. ain free chlorine; if necessary, it shall be xcess of sodium thiosulphate solution before		
Method of analysis	Preparation for Measurement: Since the electrode characteristics of a fluoride ion selective electrode generally vary with time, check the calibration curve on the day of use. To accelerate the establishment of the equilibrium potential, condition the electrode prior to measurement in the following way. Prior to measurement, immerse the electrode for 1 h in the cell which contains the reference solution-V After rinsing with the first solution to be measured, the electrode is ready for use.			
	Measurement : Pipette 25 mL of the buffer solution, followed by 25 the water sample, into a measuring cell. Ensure that the pH is $5.2 \pm$ necessary, adjust the pH with hydrochloric acid or sodium hydr solution, using as little as possible. For a series of determinations, sta measurement with the lowest concentration and finish with the high concentrations, recondition the electrode before measuring th concentrations. Measure all the solutions according to the follow procedure. Wait until constant temperature (for example 25 \pm 0.5 reached and carry out all the measurements at this temperature. stirring bar into the measuring cell and place it on the magnetic s			

Insert the electrodes into the solution and fix them in place. Adjust the stirring rate to about 180 min/L to 200 min/L. When the potential does not change by more than 0.5 mV in 5 min, switch off the stirrer. After at least 15 sec, record the value obtained. Rinse the stirring bar and the electrodes with the next solution to be measured, before starting the next measurement.

Measurement after Concentration Enhancement: If a water sample contains less than 0.2 mg/L F, proceed as follows: Add 500mL of the fluoride standard solution-I to 25 mL of the sample using a piston pipette, and 25 mL of the buffer solution with a volumetric pipette; continue as described in 2.6.2. When calculating the result, subtract the amount of fluoride ions added from the total result.

Calibration: Establish a calibration function using the five reference solutions in the corresponding concentration range. For the range 0.2 mg/L to 10 mg/L, proceed as follows:

Pipette 25 mL of the buffer solution into each of five measuring cells. Pipette the respective volumes of the working standard fluoride solutions specified into the measuring flasks. For the establishment of the calibration function proceed step by step from the most dilute solution to the most concentrated solution, rinsing after each measurement with the solution of the next highest concentration. After the above measurements have been completed, recondition the electrode for 5 to 10 min, using the reference solution-V (see Table) in order to eliminate memory effects.

Preparation of Reference Solutions					
Sl.no.	Reference	Buffer Solution	Working Standard Solution		
	Solution				
	ml		No	ml	
(1)	(2)	(3)	(4)	(5)	
i)	1	25	Ι	25	
ii)	2	25	11	25	
iii)	3	25	III	25	
iv)	4	25	IV	25	
v)	5	25	V	25	

Preparation of Reference Solutions

Use the following order of measurement (the numbers refer to the reference solutions in this Tablet.. 5 - rinse - 4 - rinse - 3 - rinse - 2 - rinse - I - rinse with 5 - recondition - repeat measuring run.

If the individual values of the parallel series vary from the first series by more than I \pm 0.5 mV. repeat the measuring run Regular checking of the calibration graph is essential. Ensure that the slope is not less than 55 mV, otherwise check the equipment and establish a new calibration graph.

fl Con

Calculation with units of	Calculation and Expression of Result: Plot the calibration values on semi			
expression	logarithmic paper, with the fluoride concentrations, in milligrams per liter,			
	on the abscissa and the cell potential, in millivolts, on the ordinate and			
	establish the regression line. Read the value for the samples by using the			
	regression line and express the mass concentration of fluoride in milligrams			
	per liter.			
Inference	NA			
(Qualitative Analysis)				
Reference	• IS : 3025 (Part 60) – 2008 Methods of Sampling and Test (Physical and			
	chemical) for water and Waste Water : Fluoride			
	• APHA 4500 F			
Approved by	Scientific Panel on Methods of Sampling and Analysis			

एफएसएसएआई SSSCOT	Determination of Total Hardness			
Method No.	FSSAI 14.026:2024	Revision No. & Date	0.0	
Scope	Water hardness is a t precipitate soap. Hardn variable and complex dissolved polyvalent me causing ions are calcius polyvalent cations also m frequently with organic be minimal and difficult the calcium and magne mg/L. The degree of hard of the equivalent CaCO3	raditional measure of the ess of water is not a specif mixture of cations and an etallic ions. In fresh water, m and magnesium which p nay precipitate soap, but ofte constituents, and their role is to define. Total hardness is esium concentration both e dness of drinking water has h concentration as follows:	capacity of water to fic constituent but is a hions. It is caused by the principal hardness precipitate soap. Other en are in complex form, in water hardness may defined as the sum of xpressed as CaCO3 in peen classified in terms	
	 Soft : 0-60 mg/L Medium: 60-120 mg/L Hard: 120-180 mg/L Very Hard: >180 mg/L Although hardness is caused by cation, it may also be discussed in terms of carbonate (temporary) and non-carbonate (permanent) hardness. Carbonate hardness refers to the amount of carbonates and bicarbonates in solution that can be removed or precipitated by boiling. This type of hardness is responsible for the deposition of scale in hot water pipes and kettles. When total hardness is numerically greater then that of total alkalinity expressed as CaCO3 the amount of hardness. When the hardness is numerically equal to less than total alkalinity is called carbonate hardness. When the hardness is numerically equal to less than total alkalinity, all hardness is carbonate hardness. The amount of hardness in excess of total alkalinity expressed as CaCO3 is non-carbonate hardness. Non-carbonate hardness is caused by the association of the hardness-causing cation with subhate chloride or pitrate 			
	and is referred to the "p be removed by boiling. Public acceptability of the depending on local condor magnesium is less than to Methods for determination Titrimetric Methonometric Method based on	permanent hardness". This ty he degree may vary conside litions, and the association. ' hat for cation. on of total hardness in water od Analytical Data	pe of hardness cannot rably from community The taste threshold for are prescribed:-	
Caution	The EDTA forms stable cobalt, zinc and nickel. complexing the metals procedure may be used	e complexes with iron, ma Heavy metal interferences with cyanide. In the pre even when iron, copper, zinc	nganese, copper, lead, can be eliminated by sence of cyanide the or lead concentrations	

	are as high as 10mg/L.
	The higher oxidation states of manganese above Mn++ react rapidly with the indicator to form discolored oxidation products hydroxylamine hydrochloride reagent may be used to reduce manganese to divalent state. The divalent manganese interference can be removed by adding of one or two crystal of potassium ferrocyanide.
	In presence of high aluminum concentrations, the blue color near end point starts disappearing and reverts to red.
	Phosphate and carbonate ion may precipitate calcium at the pH of titration.
Principle	Titrimetric Method:
	Principle: (EDTA method for determination of total hardness) depends on ability of ethylenediamine tetra acetic acid (C10H1608N2) or its disodium salt to form stable complexes with calcium and magnesium ions. When the dye eriochrome black T (EBT) (C2OH13.N307S) is added to solution containing calcium and magnesium ions at pH 10.0, a Wine red complex is formed, this solution is titrated with standard solution of disodium salt of EDTA, which extracts calcium and magnesium from the dye complex and the dye is changed back to its original blue colour. Eriochrome black T is used to indicate the end point for the titration of calcium and magnesium together. Method based on Analytical Data Total hardness computed from the concentration of the different metallic
	cation (other than alkali metals) in the sample but most often the cations
	taken into account are calcium, magnesium iron, aluminum zinc, strontium,
Annaratus /Instruments	1 Burette
Apparatus/ instruments	 2. Polyethylene bottle with Stopper
Matarials and Descents	3. Conical Flask
materials and keagents	runny of the reagents. Othess specified otherwise only pure chemicals and tannin free distilled water shall be used in tests
Preparation of Reagents	Buffer solution : Dissolve 16.9 gm ammonium chloride in 143 mL concentrated ammonium hydroxide, add 1.25gm of magnesium salt of EDTA and dilute to 250 mL with distilled water. Store the solution in a polyethylene bottle tightly stopper to prevent loss of ammonia or pick up of
	carbon dioxide for no longer than 1 month. Dilute 10 mL of the solution to 100mL with distilled water and check that the pH value is 10.0 ± 0.1 .
	In the absence of magnesium salt of EDTA dissolve 1.179 gm disodium salt of EDTA and 780 mg magnesium sulphate or 644 mg magnesium chloride in 50mL of distilled water. Add this solution to 16.9 gm ammonium chloride and 143 mL concentrated ammonium hydroxide with mixing and dilute to 250mL with distilled water. To attain the highest accuracy adjust to exact

	equivalence through appropriate addition of a small amount of EDTA or magnesium sulphate or chloride the exact amount can be determined by taking an appropriate aliquot of buffer and titrate it with disodium salt of EDTA as above. Keep the solutions tightly Stoppard to prevent loss of ammonia or absorbance of carbon dioxide and do not store for more than a month. Dilute 10 mL of the solution to 100 mL with distilled water and check that the pH value is 10.0 ± 0.1		
	Standard calcium solution: 1.0mL = 1.00mg calcium carbonate. Dry analytical grade calcium carbonate in a oven at 180°C for 1 hr. weigh 1.0gm, suspend it in distilled water and add 1:1 hydrochloric acid AR quality drop, wise slowly to dissolve the solid.		
	Use minimum amount of acid. Boil for a few minutes, cool add a few drop of methyl red indicator and adjust to orange color with 3N ammonium hydroxide or 1:1 hydrochloric acid. Dilute to 1000mL with distilled water.		
	Eriochrome black T indicator solution: Dissolve 0.40 gm Eriochrome black T and 4.5 gm hydroxylamine hydrochloride in 100mL 95% ethanol. This indicator is stable for more than 2 months. Alternatively dissolve 0.5 gm Eriochrome black T in 100mL trietthanolamine or 2 methoxyethanol or mixed 0.5 gm EBT dye and 100gm sodium chloride in pestle and mortar. Store in tightly Stoppard bottle. All indicator formulation tends to deteriorate especially when exposed to moisture. If the end point color change is not sharp enough it is either due to the presence of some interfering ions or due to deterioration of the indicator. In the latter case, addition of inhibitor sodium cyanide or sodium sulphide does not sharpen the end point color change.		
	Standard EDTA solution: Dissolve 3.723gm EDTA which has been dried overnight in sulphuric acid desiccators, in demineralized water and dilute to 1000mL. The reagent is stable for several weeks and large volume is usually prepared. Check the reagent by titrating 25 mL of standard calcium solution as described above. Store in polyethylene bottles.		
Sample Preparation			
Method of analysis	 Standardization: Pipette 25 mL of standard calcium solution in a porcelain basin and adjust the volume to 50 mL with distilled water. Add 1 mL buffer solution, add 1 to 2 drops of indicator, titrate slowly with continuous stirring until the reddish tinge disappears. adding last few drops at 3 to 5 second interval. At the end point the color is sky blue. Pipette an aliquot of water sample maximum 50 mL in a porcelain dish or 150 mL beaker and adjust the volume to approximately 50 mL. Add 1 mL hydroxylamine hydrochloride solution. 		

	3. Add 1 to 2 mL buffer solution so as to achieve pH of 10.0 to 10.1.
	4. Add 2 mL Eriochrome black T indicator solution
	5. Titrate with standard EDTA solution stirring rapidly in the
	beginning and slowly towards the end till end point is reached when
	all the traces of red and purple color disappear and solution is clear
	sky blue in color. Blank titration carried out in a same way as that
	for complement to used for comparison
	for sample may be used for comparison.
	Note- Selection of sample volume may be made such that the result lies
	between 200 to 300 mg/L of hardness (as CaCO3)
Calculation with units of	Titrimetric Method
expression	
	Total hardness as (CaCO3), mg/L = [1000(V1 –V2)/V3] x CF
	Where V1 = volume in mL of the EDTA standard solution used in the
	titration for the sample
	V2 = volume in mL of the EDTA solution used in the titration for blank.
	V3 = volume in mL of the sample taken for the test
	CF = X1/X2 correction factor for standardization of EDTA.
	X1 = volume in mL of standard calcium solution taken for standardization
	X2 = volume of mL of EDTA solution used in the titration
	Report hardness in mg/L as CaCO3 rounded to the first decimal place when
	the value is less than 10 mg/L and to the nearest unit if the value is more
	than 10mg/L.
	0,
	Method based on Analytical Data:
	Total hardness (as CaCO3), mg/L= (2.497 x mg/L Ca) + (4.116 x mg/L Mg) +
	(2.69 x mg/L Fe) + (5.567 x mg/L Al) + (1.531 x mg/L Zn) + (1.822 x mg/L)
	Mn) + (0.894 x mg/L Ba) + (1.319 x mg/L Sr).
Inference	NA
(Qualitative Analysis)	
Reference	IS: 3025 (Part 21) – 1983 (Reaffirmed 2002) - Methods of Sampling and
	Test (Physical and chemical) for water and Waste Water: Total Hardness
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआई <u>SSSC</u> Tricfle बाद बरक्ष और मानक फाविकलगा Foreit Gatery and Biovanis Automy's in Indas स्वारकर और दारियार कार्य्याप्रा मंत्रावार Manistry of Health and Family Wethaw	Determination of Alkalinity in Water By Titrimetric Procedure		
Method No.	FSSAI 14.027:2024	Revision No. & Date	0.0
Scope	Alkalinity of sample of sample of the same	an be estimated by titrating v	vith standard sulphuric
	indicator. Titration t	o decolourisation of phenolphina	hthalein indicator will
	indicate complete neu	tralization of OH- and ½ of CC)3 - while sharp change
	from yellow to orang	e of methyl orange indicator to	tal alkalinity (complete
	neutralization of OH-,	CO3 - , HCO ₃)	
	This method is applied	able to determine alkalinity in	n water in the range of
	0.5 to 500mg/L alkal	inity as cacos. The upper rang	ge may be extended by
Caution	Sulphuric Acid can be	corrosive to metals, causes sev	ere skin burns and eve
Guudon	damage.		ere blan barns and eye
Principle	Alkalinity of water is	he capacity of the water to acce	ept protons. It may be
	defined as the quantit	ative capacity of an aqueous me	edium to react with
	hydrogen ions to pH 8	.3 (phenolphthalein alkalinity)	and then to pH 3.7
	(total alkalinity or me	thyl orange alkalinity).	
	The equation in its simplest form is as follows:		
	$CO_3^2 + H + = HCO_3 (nH 8.3)$		
	From pH 8.3 to 3.7 the following reaction may occur:		
	Г	$HCO_3 - + H + = H2CO_3$	3
		· · ·	
Apparatus/Instruments	1. pH meter		
	2. Burette- 50 m	L capacity	
Matorials and Poagonts	3. Magnetic stirr	er assembly	
Materials and Reagents	2. Sulphuric acid		
	3. Phenolphthale	in indicator	
	4. Mixed indicate	or solution	
Preparation of Reagents	1. Distilled Wat	er :	
	Distilled wate	used should have pH not less	than 6.0. If the water
	has pH less th	an 6.0, it shall be freshly boiled	tor 15 minutes and
	cooled to roor	i temperature. Deionized water nductance of less than 2 us /cm	r may be used provided
	6.0.	$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	and a pri more than
	2. Sulphuric Ac	d :	
	Dilute 5.6 mL	of concentrated sulphuric acid	(relative density 1.84)
	to 1 liter with	distilled water.	

	3. Standard solution of sulphuric acid: 0.02N
	4. Phenolphthalein indicator:
	Dissolve 0.5 gm of phenolphthalein in 100mL, 1:1 (v/v) alcohol
	water mixture
	5. Mixed indicator solution:
	Dissolve 0.02gm methyl red and 0.01gm bromocresol green in
	100mL, 95 percent, ethyl or isopropyl alcohol.
Sample Preparation	The sample aliquot used for analysis should be either free from turbidity or
	should be allowed to settle prior to analysis.
Method of analysis	1. Pipette 20 mL or a suitable aliquot of sample into 100 mL beaker.
	2. If the pH of the sample is over 8.3 then add 2 to 3 phenolphthalein
	indicator and titrate with standard sulphuric acid solution till the
	pink color observed by indicator just disappears (equivalence of pH
	8.3).
	3. Record the volume of standard sulphuric acid solution used. Add 2
	to 3 drops of mixed indicator to the solution in which the
	phenolphthalein alkalinity has been determined.
	4. Titrate with the standard acid to light pink color (equivalence of pH
	3.7). Record the volume of standard acid used after phenolphthalein
	alkalinity
Calculation with units of	
expression	Calculate alkalinity in the sample as follows Phenolphthalein alkalinity (as m_{π}/L of CaCO2) = $4\pi N \sqrt{50000}$
	$\frac{M \times N \times S0000}{V}$
	Total alkalinity (as mg/L CaCO3) = $(A+B) \times N \times 50000$
	V
	Where.
	A= mL of standard sulphuric acid used to titrate to pH 8.3
	B=mL of standard sulphuric acid used to titrate form pH 8.3 to pH 3.7
	N= normality of acid used
	V= Volume in mL of sample taken for test
Inference	NA
(Qualitative Analysis)	
Reference	1. IS : 3025 (Part 23) – 1986 (Reaffirmed 2003)- Methods of Sampling
	and Test (Physical and chemical) for water and Waste Water :
	Alkalinity
	2. APHA 24 TH EDITION 2023
Approved by	Scientific Panel on Methods of Sampling and Analysis

WINGTHE AND	Determination of Sulphates by turbidity method		
Method No.	FSSAI 14.028:2024	Revision No. & Date	0.0
Scope	Turbidity method is applicable to surface and ground water in the range of 1 to 40 mg/L SO4 ⁻ . Samples having higher concentrations than this can be measured by appropriate dilution of sample		
Caution	 Color or suspended mater in large amounts will interfere. In waters containing large quantities of organic material, it may not be possible to precipitate barium sulphate satisfactorily. 		
Principle	Sulphate ion is precipi chloride in such a manr size. The absorbance of nepholometer or trans sulphate ion concentrati a standard curve.	tated in hydrochloric acid ner as to form barium sulph of barium sulphate suspens smission photometer (turb on is determined by compari	medium with barium ate crystals of uniform ion is measured by a idity meter) and the ison of the reading with
Apparatus/Instruments	 Turbidity meter Usual laboratory 	or spectrophotometer- for us glass apparatus	se at 420 nm
Materials and Reagents	 Barium chloride Gelatin powder Conditioning rea Conditioning rea Stock sulphate so Standard sulphat Hydrochloric aci 	gent (1) gent (2) blution te solution d (1+9)	
Preparation of Reagents	 1. Conditioning reagent (1) - Add 0.3 gm gelatin in 100mL distilled water and warm it on hot plate till it is dissolved. The gelatin solution is kept for about 12 hours, or overnight preferably, at 4°C after bringing the solution to room temperature, 3.0 gm barium chloride is added to gelatin solution and dissolved by mixing. The turbid solution is kept standing for 2 hours and mixed before use. 2. Conditioning reagent (2) - Mix 50 mL glycerol with a solution containing 30mLconcentration hydrochloric acid, 300mL distilled water, 100 mL 95% ethyl or isopropyl alcohol and 75 gm sodium chloride. 3. Stock sulphate solution - Dissolve 0.1479 gm of anhydrous sodium sulphate (Na2SO4) in distilled water and dilute to one liter. 4. Standard sulphate solution - prepare a series of standards by diluting stock solution of sulphate to cover the desired range in between 1 to 40 mg/L. 5. Hydrochloric acid (1+9) - dissolve one volume of concentrated hydrochloric acid with 9 volumes of distilled water 		
Sample Preparation	Filter the sample throug	h 0.45 μ m, filter, if there is an	ny turbidity.
Method of analysis	1. Take 20 mL of cl	ear aliquot of the water samp	ole of suitable amount

	diluted to 20 mL in 100mL conical flask.
	2. Add 1.0 mL hydrochloric acid solution and 1.0 mL conditioning
	reagent and mix well for 30 sec.
	3. Read the absorbance on spectrophotometer after 10 min if glycerol
	conditioning reagent is used or 30 min, if gelatin is used, at 420 nm
	or read the turbidity occurred on turbidity meter following the
	manufacturer instruction to operate. If water sample is turbid take
	20 mL sample or suitable amount dilute to 20 mL with distilled
	water. Do not add conditioning reagent. Read the absorbance of this
	sample and subtract this value form the above measured
	absorbance
	4. Calibration curve: prepare a series of standards taking at least 4
	standards and run a blank and follow the steps 2 and 3 and prepare
	a calibration curve of standards mg/L vs. absorbance
Calculation with units of	Read the sulphate concentration of sample directly from the
expression	calibration curve
Inference	NA
(Qualitative Analysis)	
Reference	IS: 3025 (Part 24) - 1986 (Reaffirmed 1992) - Methods of Sampling and
	Test (Physical and chemical) for water and Waste Water : Sulphate
Approved by	Scientific Panel on Methods of Sampling and Analysis

WERE AND A STATE A	Determination of Sulphates by gravimetric method		
Method No.	FSSAI 14.029:2024	Revision No. & Date	0.0
Scope	This method is applicabl	e for all the waters having su	llphate
	concentrations above 10) mg/L; however, it is a time of	consuming method.
Caution	Suspended matter, silica	a, barium chloride precipitar	nt, nitrate and sulphate
	are the principal factors	in positive error. Alkali met	al sulphates and heavy
	metals, such as chromiu	m and iron cause low results	. To minimize solubility
	of barium sulphite, th	e acid concentration while	e precipitating barium
During single	sulphate, should be mini	mized.	
Principle	Sulphate is precipitated	in hydrochloric acid medium	as
	is carried out near boilir	in temperature and after a ne	action. The precipitation
	nrecinitate is filtered wa	ashed with water until free of	f chlorides ignited or
	dried and weighed as ba	rium sulphate (BaSO4).	emoriaes, ignited of
		r r r (· · · ·)	
	The reaction in its simpl	est form is:	
	Hcl medium		
Apparatus /Instruments	SO4+ BaCl2	Ba S04 + 2Cl	
Apparatus/instruments	2 Drying oven - eq	uinned with thermostatic cor	atrol
	2. Drying oven - eq 3. Muffle furnace -	with heat indicator	
	4. Desiccator		
	5. Analytical balance	ce - capable of weighing to 0.1	1 mg.
	6. Filter paper - aci	d washed. Ashless hard finish	n filter paper
	sufficiently retentive for fine precipitates (preferably Whatman No. 42).		
	7. Crucible - Porous bottom silica or porcelain crucible with a		
	maximum pore size of 5 microns.		
	8. Ion-exchange column The exchange column should be regenerated		
	by passing hydr	ochloric acid (6.2) solution af	fter five or six samples
	have passed three	ough the column followed by	washing with distilled
Matariala and Dasarate	water		
Materials and Reagents	1. Methyl red indic	ator	
	2. Hyurochioric aci	u (1.4)	
	4. Silver nitrate-nit	ric acid reagent	
	5. Ion exchange res	sin	
Preparation of Reagents	1. Methyl red indica	tor - Dissolve 100 mg methyl	l red sodium salt in
	distilled water and	d dilute to 100 mL.	
	2. Hydrochloric acid	(1: 4) - Dilute one volume of	concentrated
	hydrochloric acid	with four volumes of distilled	d water.
	3. Barium chloride s	olution - Dissolve 100 gm of	barium chloride
	(BaCl2.2H2O) in 1	litre distilled water. Filter th	rough a membrane

	filter or hard finish filter paper (1 mL of this reagent is capable of
	precipitating approximately 40 mg S04).
	4. Silver nitrate-nitric acid reagent- Dissolve 8.5 gm of silver nitrate and
	0.5 mL of nitric acid in 500 mL distilled water.
	5. Ion exchange resin - Strong cation exchange resin, Amberlite IR-120
	or equivalent
Sample Preparation	• The sample used for analysis should either be free from turbidity or filtered through 0.45 μm filter.
	• If, the total cation concentration in the sample is more than 250mg/L or if the total heavy metal ion concentration is more than 10 mg/L, pass the sample through a cation removing ion exchange column.
	• If the silica concentration exceeds 25 mg/L, evaporate the sample nearly to dryness in a platinum dish on a steam bath. Add 2 mL hydrochloric acid tilt the dish and rotate it until the acid comes in contact with the residue; continue the evaporation to dryness. Complete the drying in an oven at 180°C and if organic matter is present, char over the flame of a burner. Moisten the residue with 2 mL distilled water and 2 mL hydrochloric acid and evaporate to dryness on steam bath. Add 5 mL hydrochloric acid, take up the soluble residue in hot water and filter. Wash the insoluble silica with several small portions of hot distilled water. Combine the filtrate and washings.
Method of analysis	1. Adjust the clarified sample, treated if, necessary to remove
	interfering agents, to contain approximately 100 mg of sulphate ion in 500 mL volume.
	2. Add 2 to 3 drops of methyl red indicator solution. Add hydrochloric acid drop till an orange red colour appears. Lower concentrations of sulphate ion may be tolerated if it is impracticable to concentrate the sample to the optimum level, but in such cases it is better to fix the total volume at 150 mL after concentration on hot plate.
	3. Heat the solution to boiling, while stirring gently, add warm barium chloride solution slowly until precipitation appears to be complete, then add about 2 mL in excess. Digest the precipitate at 80-90°C for at least 2 hours.
	4. Filtration - Filter the precipitate through filter paper and wash the precipitate with small portion of warm distilled water until me washings are free of chloride ions as indicated by testing with silver nitrate-nitric acid reagent.
	5. Dry the precipitate in crucible and ignite at 800°C for 1 hour. NOTE: Do not allow the filter paper to flame.
	6. Cool in a desiccator and weigh
Calculation with units of	Calculate the sulphate concentration in the sample from the equation:
expression	Sulphate concentration as mg/L BaS04 = $\underline{\text{mg BaS04 X 411.5}}$
	mL of sample

Inference	NA
(Qualitative Analysis)	
Reference	IS: 3025 (Part 24) – 1986 (Reaffirmed 1992) - Methods of Sampling and Test
	(Physical and chemical) for water and Waste Water : Sulphate
Approved by	Scientific Panel on Methods of Sampling and Analysis

VUENTRE AND	Determination of Sulphate by Thorin method		
Method No.	FSSAI 14.030:2024	Revision No. & Date	0.0
Scope	This method is applicable to surface and groundwater's with sulphate concentrations in the range 5 to 150 mg/L. Samples having higher concentrations can be measured by appropriate dilution of sample		
Caution	chloride ions in concent	rations greater than 1000 m	g/L cause an indistinct
	overcome this interferent sample to increase the sample to increase	nce, a known amount of sulph ulphate concentration	nate present is added to
Principle	Sulphate ion is titrated	d in an alcoholic solution	under controlled acid
	conditions with a stand	lard barium chloride solutio	on, using thorin as the
Annaratus /Instrumonts	Indicator.	hasin 100 to 125mL canacity	7
Apparatus/ instruments	2. Burette - along w	vith titration assembly.	/.
	3. Ion exchange col	umn	
Materials and Reagents	1. Ethyl alcohol- 95	%.	
	2. Ammonium hydr	coxide solution (1 + 99)	
	3. Hydrochloric aci	d solution $(1 + 99)$.	
	4. Hydrochloric aci	d solution (1 + 4).	
	6. Ion exchange res	in	
	7. Stock sulphate so	blution (100 mg/L SO ₄ ²).	
	8. Standard sulpha	te solution	
	9. Standard barium	chloride solution	
Preparation of Reagents	 Ammonium concentrated Hydrochlorid concentrated 	hydroxide solution (1 + 99 l ammonia with 99 volumes o c acid solution (1 + 99) l hydrochloric acid with 9 ⁴) - Mix one volume of of distilled water. - Mix one volume of 9 volumes of distilled
	water. 3. Hydrochlorid concentrated water.	c acid solution (1 + 4) - l hydrochloric acid with 4	Dilute one volume of volumes of distilled
	4. Thorin solut disulpho-1-n distilled wate	ion - Dissolve 0·2 gm thor aphthylazo benzene arseni er.	Fin (2, $2 \cdot \text{Hydroxy-3}$, 6- c acid) in 100 mL of
	5. Ion exchange 120 or equiv	e resin - Strong cation-excha alent.	ange resin. Aberlite IR-
	 Stock sulph gmanhydrou hour) in dis flask. 	ate solution (100 mg/L S s sodium sulphate (Na2SO4 tilled water and make up t	5042 Dissolve 1.479) (dried at 110°C for 1 o 1 litre in volumetric
	7. Standard su solutions by	lphate solution - Prepare diluting stock solution of	a series of standard sulphate with distilled

	water. The concentrations of standard solutions are 0 (blank).
	$10, 20, 50, 40, 50, 60, 100 \text{ and } 150 \text{ mg/L} 504^2.$
	8. Standard barium chloride solution - Dissolve 0.4 gm barium
	chloride (BaCl2. 2H20) in 800 mL of distilled water and adjust
	the pH to 3.5 to 4.0 with dilute hydrochloric acid (6.3) or
	ammonia solution (6.2) and finally make up to one litre.
Sample Preparation	The sample should be free from turbidity or filtered through a 0.45 μ m
	filter.
Method of analysis	1. Pass the sample through ion exchange column (50 mL at a time).
	Discard the first 10 mL effluent and then collect in a 100mL beaker. Pipette
	10 mL of this sample into a porcelain basin
	2. Add 40 mL alcohol and 2 drops of thorin indicator. Adjust the pH to 3.8
	to 4-0 by carefully adding drop by drop ammonia solution until the solution
	just turns nink. Then add hydrochloric acid solution drop by drop until the
	just turns plink. Then add hydrochione acid solution drop by drop until the
	plink colour disappears; a drop is usually sufficient.
	Note -If the ammonia is added too fast, it is possible to overrup the colour
	change from yellow to nink and the sample continues to be yellow. It is then
	impossible to develop the pink and the sample continues to be yellow. It is then
	impossible to develop the plnk colour by addition of ammonia solution.
	3 Titrate with standard barium chloride solution (6.9) until sample just
	turns pink
Colculation with units of	Drange a calibration surve mL of standard barium chlorida colution
	Prepare a campration curve, int of standard barluin chloride solution
expression	needed to titrate standard sulphate solution vs mg/L SO4
	and read the sulphate concentration of sample directly from the graph.
Inference	NA
(Qualitative Analysis)	
Reference	IS: 3025 (Part 24) – 1986 (Reaffirmed 1992) - Methods of Sampling and
	Test (Physical and chemical) for water and Waste Water : Sulphate
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआई	Determination of Sulphide By Iodometric Method		
JSSai			
Food Sathy and Diandards Authority of India स्वास्थ्य और परियाद राज्याण मंत्रालय Ministry of Health and Family Welfare			
Method No.	FSSAI 14.031:2024	Revision No. & Date	0.0
	Sulfida is often present	in groundwater and addim	ont It is produced by
Scope	decomposition of organ	in groundwater and sedim	luction of sulfate It is
	sometimes found in ind	ustrial or municipal wastew	vater. Hvdrogen sulfide
	escaping into the air	from sulfide-containing wa	stewater causes odor
	nuisances. The thresho	ld odor concentration of H	H2S in clean water is
	between 0.025 and 0.25	µg/L. Gaseous H2S is very to	xic and has claimed the
	lives of numerous work	ers. At levels toxic to human	is it interferes with the
	olfactory system, giving	a false sense of the safe abs	sence of H2S. It attacks
	sewers because it is or	vidized biologically in the	corrosion of concrete
	H2SO4 on the pipe wal	l. Dissolved H2S is toxic to	fish and other aquatic
	organisms.		1
Caution	Reduced sulphur cor	npounds such as sulphi	te thiosulphate and
	hydrosulphite which dec	compose in acid may yield er	ratic results.
	Valatila jadina conqumir	a cubatan aga will give bigh n	agulta
	volatile louine consumit	ig substances will give high r	esuits.
	Eliminate interferences	due to sulphite, thiosulphate,	iodide and many other
	soluble substances but n	ot ferro-cyanide, by first pre	cipitating zinc sulphide
	removing the supernata	ant, and replacing it with d	istilled water. Use the
	same procedure even v	when not needed for remove	val of interferences, to
Drinciplo	concentrate sulphide.	from the acidified comple	with an inart gas and
Principle	collected in zinc acetate	solution Excess jodine solu	ution added to the zinc
	sulphide suspension re	eacts with the sulphide up	nder acidic condition.
	Thiosulphate is used to r	neasure unreacted iodine to	indicate the quantity of
	iodine consumed by sulp	bhide. The reaction may be gi	ven as follows:
	1.1. $S + I_2 = S_2 + 2I$	$D_{\alpha} = S_{\alpha} D_{\alpha} + 2I$	
	$1.2.$ 1_2 (excess)+ 2.3_2 ($J_3 - J_4 U_6 + Z_1$	
Apparatus/Instruments	1. Reaction Flask:		
	Wide mouth bottle of 1 l	itre capacity with a 2 hole sto	opper, fitted with a
	fritted gas-diffusion tube	e (plastic, ceramic or glass an	d a gas outlet tube).
	2. Absorption flasks		
	Two 250 mL capacity lo	ng necked flask with 2 hole s	toppers fitted with
	glass tubes and suitable	connections to pass gas throu	ugh in series.
Materials and Reagents	1. Zinc acetate solution	1 (2 N) -	diatillad water d
	Dissolve 110 gm Zn	(C2H3OZJZ.2H2O on 400 ml	austilied water and

	finally make up to 1 litre		
	 2. Inert gas- A cylinder of nitrogen [pure grade, see IS: 1747- 1972 Specification for nitrogen (first revision)] or CO2 or a CO2 gas generator [Grade 1 see IS: 307- 1966 specification for carbon dioxide (second revision)] 		
	3. Sulphuric Acid concentrated		
	4. Standard iodine solution (0.025 N) – Dissolve 20-25 gm potassium iodide (Kl) in a little water and add 3.175 gm iodine. After iodine has dissolved, dilute to 1 litre with distilled water, standardize this solution against 0.025 N sodium thiosulphate using starch indicator.		
	5. Hydrochloric acid concentrated		
	6. Standard thiosulphate solution (0.025 N): Dissolve 6.205gm Na2S2O25H2O in 800 mL boiled and cooled distilled water. Add 0.4 gm NaOH or 5 mL chloroform as a preservative and finally make up to 1 litre		
	7. Starch indicator solution : Add 5.0 gm starch to 800 mL boiling distilled water & stir. Dilute to one litre and boil for few minutes and let settle over night. Use the clear supernatant. (This solution may be preserve by adding 1.25 gm of salicylic acid/litre or by adding a few drops of toluene)		
	8. Aluminum Chloride solution (6 N): Take the 100 gm AlCl3.6H2O from a previously unopened reagent bottle and dissolve in 144mL distilled water. Note- because of the hygroscopic and caking tendencies of this chemical it will be convenient to purchase in small packing		
	9. Sodium hydroxide (6 N): Dissolve 240 gm NaOH in distilled water and dilute to 1 litre		
Preparation of Reagents	Same as above.		
Sample Preparation	Put required quantity of 2 N zinc acetate solution into 500 mL glass bottle, fill with sample and add required quantity of 6 N sodium hydroxide solution. Stopper with no air bubbles under stopper and mix by rotating back and forth vigorously about a transverse axis. Addition of reagents may be varied in volume so that the resulting precipitate is not excessively bulky and settles rapidly. Add enough sodium hydroxide to produce a pH above 9. Let the precipitate settle for 30 minutes. Filter the precipitate through glass fiber filter paper and carry out titration immediately.		
Method of analysis	1 Total sulphide:		
	1.1 Take 5 mL zinc acetate solution and 95 mL distilled water into each of the two absorption flasks1.2 Connect the reaction flask and two absorption flasks in series and purge		

	the system with CO2 or N2 for 2 minutes. Measure 500 mL well mixed with sample into the reaction flask
	1.3 Acidify the sample with 10 mL concentrated H2SO4 and replace the prepared 2 holes stopper tightly pass N2 or CO2 (Not air or oxygen) through the sample for 1 hour or until the experiments show no more sulphide coming over
	1.4 To each of the absorption flasks, then add iodine solution well in excess of the amount necessary to react with collected sulphide
	1.5 Add 2.5 mL concentrated HCl acid to each flask, stopper and shake to mix thoroughly
	1.6 Transfer contents of bath flasks and back titrate with 0.025 N sodium thiosulphate solution using starch solution as indicator. Run a blank parallel for accurate results.
	2.2 Dissolved Sulphide
	2.1 Remove suspended solids in the sample by flocculation and settling.
	2.2 Fill 1 litre bottle with flowing sample in such a way that the sample, which has had the least possible contact with air. Add 2 mL aluminium chloride solution and 2 mL NaOH solution and stopper with no air bubbles under the stopper. Rotate back and forth about a transverse axis as vigorously as possible for at least 1 minute in order to flocculate the contents thoroughly. Note- The volume of these chemicals may be varied according to experience, the idea being to get good clarification without using excessively large amounts.
	2.3 Allow to settle for 15minutes, or until supernant liquid is reasonably clear. Alternatively remove suspended matter by centrifugation.
	2.4 Proceed as for total sulphide after taking 500 mL sample into the reaction flask.
Calculation with units of expression	Mg/L Sulphide = <u>(V1- V2) X 400</u> V
	Where, V1= volume in mL of standard iodine solution added V2 = Volume in mL of standard thiosulphate solution used, and V = Volume in mL of sample taken
Interferences	1. Reduced sulphur compounds such as sulphite thiosulphate and hydrosulphite which decompose in acid may yield erratic results.
	2. Volatile iodine consuming substances will give high results.

	3. Eliminate interferences due to sulphite, thiosulphate, iodide and many other soluble substances but not ferro-cyanide, by first precipitating zinc sulphide removing the supernatant, and replacing it with distilled water. Use the same procedure even when not needed for removal of interferences, to concentrate sulphide.
Reference	1. APHA 24 TH EDITION 2023
	2. IS 3025 (PART 29) 1986
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआई SSSC Trisfle बाद बर्श्व और मारक प्राधिकरना Food Eatery and Elevandris Automy's Hinda स्वारक्ष और परिवार करवायांग्रा मंत्रावार Manistry of Health and Parmiy Weithaw	Determination of Sulphide By Ion Selective Electrode		
Method No.	FSSAI 14.032:2024	Revision No. & Date	0.0
Scope	Sulfide is often present in groundwater and sediment. It is produced by decomposition of organic matter and bacterial reduction of sulfate. It is sometimes found in industrial or municipal wastewater. Hydrogen sulfide escaping into the air from sulfide-containing wastewater causes odor nuisances. The threshold odor concentration of H2S in clean water is between 0.025 and 0.25 µg/L. Gaseous H2S is very toxic and has claimed the lives of numerous workers. At levels toxic to humans it interferes with the olfactory system, giving a false sense of the safe absence of H2S. It attacks metals directly and indirectly has caused serious corrosion of concrete sewers because it is oxidized biologically in the presence of oxygen to H2SO4 on the pipe wall. Dissolved H2S is toxic to fish and other aquatic organisms.		
Caution	Humic substances may colored water (high con standard additions to ch Sulfide oxidation may c decreasing concentration samples and standards w oxygen for low-level r potentials to drift either samples come to the s immediately, preserve c (4500-S 2C).	interfere with Ag/S-ISE mea centration of humic substan- eck results. Sulfide is oxidize ause potential readings to d on, i.e., to more positive va with nitrogen to minimize co neasurements. Temperature upward or downward. There ame temperature. If sample lissolved sulfide by precipit	asurements. For highly ces), use the method of ed by dissolved oxygen. Irift in the direction of alues. Flush surface of ntact with atmospheric e changes may cause efore, let standards and es cannot be analyzed ating with zinc acetate
Principle	The potential of a silver the sulfide ion activity. samples and standards provide a constant ionic in terms of total dissolver must be at the same ter mg/L (1 x 10-6M) preconcentration. For lo	r/sulfide ion-selective electr An alkaline antioxidant reag to inhibit oxidation of sulf strength and pH. Use of the ed sulfide concentration. All emperature. Sulfide concent and 100 mg/L can be wer concentrations, preconce	rode (ISE) is related to gent (AAR) is added to fide by oxygen and to AAR allows calibration samples and standards rations between 0.032 e measured without entration is necessary.
Apparatus/Instruments	 Silver/sulfide ele Double-junction Electrode polishi pH meter with m that can be calib additions calcula Electrochemical sheet of rigid pl insertion of the 	ectrode. * reference electrode. ing strips. nill volt scale, capable of 0.1- prated in concentration and t tions are available. cell: Make suitable cell from lastic (PVC or acrylic) with electrodes and a tube for f	m V resolution. Meters that perform standard- a 150mL beaker and a holes drilled to allow flushing the headspace

	with nitrogen. Alternatively, purchase a polarographic cell with gas
	6. Gas dispersion tube: Use to deaerate water for preparing reagents
	and standards.
	7. Magnetic stirrer and stirring bar: Use a piece of Styrofoam or
	cardboard to insulate the cell from the magnetic stirrer
Materials and Reagents	1. Alkaline antioxidant reagent (AAR).
	2. Lead per chlorate, 0.1 M
	3. Sulfide stock solution
Propagation of Descents	4. Suilide standards
	reagent water (DRW) in a 1L volumetric flask, add 80 gm NaOH, 35 gm ascorbic acid, and 67 gm Na2H2EDTA. Swirl to dissolve and dilute to 1L. The color of freshly prepared AAR will range from colorless to yellow. Store in a tightly capped brown glass bottle. Discard when solution becomes brown.
	Lead per chlorate, 0.1 M: Dissolve 4.60 gm Pb(CIO4)2 . 3H2O in 100 mL reagent water. Standardize by titrating with Na2H2EDT A. Alternatively, use commercially available 0.1 M Pb(CIO4)2 solutions.
	Sulfide stock solution: Dissolve 3.75 gm of NA2S.9H2Oand diluted to 500 mL will give a stock solution of which 1.00 mL= 1 mg S-2. Dilute 13.0 mL of 1.00 mg S2- /mL stock to 100.0 mL with AAR. Alternatively, add 500 mL AAR and 1 g Na2S.9H2O to a 1L volumetric flask; dissolve. Dilute to 1L with DRW. Use deaerated artificial seawater (DASW) or 0.7M NaCl if sulfide concentrations are to be determined in seawater. Standardize stock solution by titrating with 0.1MPb(CIO4)2 . Pipet 50 mL sulfide stock solution into the electrochemical cell. (Use 10 mL with a small-volume polarographic cell.) Insert Ag/S electrode and reference electrode and read initial potential. Titrate with 0.1 MPb(CIO4)2 .Let electrode potential stabilize and record potential after each addition. Locate equivalence point as in Section 4500-CID 4a. Alternatively, linearize the titration curve1 Calculate the function F1for points before the equivalence point
	$F1 = (V0 + V) \ 10^{E/m}$
	where: V 0= volume of stock solution, mL, V = titrant volume, mL, E = potential, mV, and m = slope of calibration curve, mV/log unit.
	Plot F1 as a function of titrant volume. Extrapolate to find the intersection with the x-axis; that is, the equivalence point. Calculate sulfide concentration in the stock solution from:

	C= Veg [Pb]
	VO
	where: C = sulfide concentration, mg/L,
	Veg = equivalence volume, mL,
	[Pb] = concentration of Pb in titrant, mg/L, and
	Vo = volume of stock solution. mL.
	,
	Store stock solution in a tightly capped bottle for 1 week or less. The stock solution also can be standardized iodometrically. CAUTION: Store in a fume hood.
	Sulfide standards: Prepare sulfide standards daily by serial dilution of stock. Add AAR and Zn (C2H302)2 solutions to100mL volumetric flasks. Add sulfide solutions and dilute to volume with DRW (or DASW). Prepare at least one standard with a concentration less than the lowest sample concentration.
Sample Preparation	NA
Method of analysis	Check electrode performance and calibrate daily. Check electrode potential in a sulfide standard every 2 hr. The procedure depends on the sulfide concentration and the time between sample collection and sulfide determination. If the total sulfide concentration is greater than 0.03 mg/L (1 X 10-6M) and the time delay is only a few minutes, sulfide can be determined directly. Otherwise, precipitate ZnS and filter as described in 4500-S 2C. Check electrode performance: Pipet 50 mL AAR, 50 mL DWR, and 1 mL sulfide stock solution into the measurement cell. Place Ag/S and reference
	electrodes in the solution and read potential. Add 10 mL stock solution and read potential. The change in potential should be -28 ± 2 mV. If it is not, follow the troubleshooting procedure in the electrode manual.
	Calibration: Place electrodes in the most dilute standard but use calibration standards that bracket the sulfide concentrations in the samples. Record potential when the rate of change is less than 0.3 m V/min (This may take up to 30 min for very low sulfide concentrations, i.e., less than 0.03 mg/L.) Rinse electrodes, blot dry with a tissue, and read potential of the next highest standard. For a meter that can be calibrated directly in concentration, follow manufacturer's directions. For other meters plot potential as a function of the logarithm (base 10) of the sulfide concentration. For potentials in the linear range, calculate the slope and intercept of the linear portion of the calibration plot.
	Sulfide determination by comparison with calibration curve, no ZnS precipitation: Add 40 mL AAR, 0.15 mL (3 drops) zinc acetate, and 50mL sample to a 100mL volumetric flask. Dilute to 100 mL with AAR. Pour into

	the electrochemical cell and insert the electrodes. Record potential when
	the rate of change is less than 0.3 mV/min. Read sulfide concentration from
	the calibration curve Alternatively for notentials in the linear range
	calculate the sulfide concentration from $ST_{ot} = 10(F_{c}h)/m$
	Whore F = electrode potential and
	where: $E = \text{electroue potential and}$
	B and m are the intercept and slope of the calibration curve.
	For a meter that can be calibrated directly in concentration, follow the
	manufacturer's directions.
	Sulfide determination by comparison with calibration curve with 7nS
	sumue determination by comparison with cambration curve, with Zhs
	precipitation: Flace litter with Zits precipitate in a 150mL beaker containing
	a sui bai. Wash sample boule with 50 IIL AAR and 20 IIL DRW and pour
	the washings into the beaker. Stir to dissolve precipitate. Remove filter with
	forceps while rinsing it into the beaker with a minimum amount of DRW.
	Quantitatively transfer to a 100mL volumetric flask and dilute to mark with
	DRW. Pour into the electrochemical cell and place the electrodes in the
	solution. Measure potential as in 4.3 above. Calculate sulfide concentration
	(above)
	Sulfide determination by standard addition with or without ZnS
	precipitation: Measure the Ag/S-ISE electrode potential as in 4.3 or 4.4
	above. Add sulfide stock solution and measure potential again. Calculate
	sulfide concentration as follows:
	Co = fCS
	(1+f)10(E s -E o)/m – 1
	where: Co and Cs= sulfide concentrations in sample and known addition,
	Eo and Es= potentials measured for sample and known addition,
	m = slope of calibration curve (approximately 28 mV/log S 2- and
	f = ratio of known-addition volume to sample volume
Calculation with units of	As mentioned above
expression	
Interferences	NA
Reference	IS 3025 (PART 29) 1986. APHA 4500S-2
Approved by	Scientific Panel on Methods of Sampling and Analysis

UNDERVERVENCE UNDERVERVENCE WITCHING WITCH GROUPS AND	Determination of Cyanide by colorimetric method		
Method No.	FSSAI 14.033:2024	Revision No. & Date	0.0
Scope	Cyanide refers to all of the CN groups in cyanide compounds that can be determines as the cyanide ion, CN; by the methods used. The cyanide compounds in which cyanide can be obtained as CN- are classed as simple and complex cyanide.		
Caution	Potassium cyanide is highly toxic, take care to avoid ingestion; use gloves while preparing solution.		
Principle	Distillation of sample in the presence of sulphuric acid converts simple and complex cyanides into hydrocyanic acid. The hydrogen cyanide gas is absorbed in a solution of sodium hydroxide and the cyanide is determined colorimetrically. Fe (CN) $6^{-4} + 6^{H+} \longrightarrow 6HCN + Fe^{+2}$		
	но	$CN + NaOH \implies NaCN + H_2$	0
	In the colorimetric meas solution after distillation chloramine-T. The cyanc of pyridine-pyrazolone r or pyridine-barbituric ac and 582 nm.	urement the cyanide in the s n is converted to cyanogen ch ogen chloride then forms a bl reagent and the absorbance is cid reagent and the absorban	odium hydroxide loride by reaction with ue dye on the addition s measured at 620 nm ce is measured at 575
Apparatus/Instruments	 1. Boiling flask- 1 litre with inlet tube and provision for water cooled condensers 2. Heating mantle 3. Gas absorber- with gas dispersion tube equipped with medium- porosity fritted outlet 		
	 4. Ground glass ST joints the boiling flask and con joints may also be used. 5. Spectrophotometer- for in pyridine-Pyrazolone r 	- TFE sleeved or with an app denser. Neoprene stopper an or use at 620 nm, providing a reagent Method	ropriate lubricant for Id plastic threaded Ight path of 1 cm used
	6. One of the following is reagent:i) Spectrophotometer, follongerii) Filter photometer, pro-	required in case of Pyridine or use at 578 nm, providing a pyiding a light path of at least	-barbituric acid light path of 10 mm or t 10 mm and equipped
Materials and Reagents	 with a red filter having maximum transmittance at 570 to 580 mm. 1. Sodium hydroxide solution- Dissolve 50 gm sodium hydroxide in 1 litre distilled water. 2. Lead carbonate- Powdered. 3. Sulphamic acid (NH2SO2H) 		

	4. Magnesium Chloride solution- Dissolve 51 gm magnesium chloride	
	(MgCl2.6H2O) in 100 mL distilled water.	
	5. Sulphuric acid concentrated.	
	6. Sodium Hydroxide solution (0.2 N) - Dissolve 8.0 gm sodium	
	hydroxide in 1 litre distilled water.	
	7. Acetic Acid- Make by diluting 1 part of glacial acid with 4 parts of	
	water	
	8. Pyridine-Pyrazolone reagent Method:	
	Stock cyanide solution	
	Standard cyanide solution	
	Chloramine- T	
	• Pyridine	
	• 1-phenyl-3-methyl-5 pyrazolone solution	
	• Bis-pyrazolone (3,3'-dimethyl-1-diphenyl) (4,4'-bis 2pyrazolone)-	
	(5,5' dione)	
	Mixed pyridine-Pyrazolone reagent	
	Standard silver nitrate solution	
	9. Pyridine-barbituric acid reagent Method:	
	CholoramineT- Solution	
	Stock cyanide solution	
	Standard cyanide solution	
	Pyridine-barbituric acid reagent	
	Acetate buffer	
	Sodium Hydroxide dilution solution	
Preparation of Reagents	1. Sodium hydroxide solution- Dissolve 50 gm sodium hydroxide in 1	
	litre distilled water.	
	2. Lead carbonate- Powdered.	
	3. Sulphamic acid (NH2SO3H).	
	4. Magnesium Chloride solution- Dissolve 51 gm magnesium chloride	
	(MgCl2.6H2O) in 100 mL distilled water.	
	5. Sulphuric acid concentrated.	
	6. Sodium Hydroxide solution (0.2 N) - Dissolve 8.0 gm sodium	
	hydroxide in 1 litre distilled water.	
	7. Acetic Acid- Make by diluting 1 part of glacial acid with 4 parts of water	
	8. Pvridine-Pvrazolone reagent Method :	
	 Stock cvanide solution- Dissolve 2.51 gm notassium cvanide in 1 	
	litre water, standardise this solution with 0.019 2 N silver nitrate	
	solution. This solution loses strength gradually and must be	
	rechecked every week	
	(1 mL of this solution = 1 mg CN)	
	• Standard cyanide solution - Dilute 10 mL stock solution to 1 litre	
	with distilled water, mix and make a second dilution of 10mL to 100	
	mL.	
	One mL = 1 μg CN	
	Note = this solution must be prepared daily	

(Caution: Toxic, take care to avoid ingestion)
• Chloramine- T-Dissolve 1 gm of chloramines- T in 100 mL distilled
water. Prepare daily.
• Pyridine
• 1-phenyl-3-methyl-5 pyrazolone solution - Prepare a saturated
aqueous solution (approximately 0.5 g/100 mL) by adding the
pyrazolone to water at 75°C. Agitate occasionally as the solution
cools to room temperature. If necessary, the pyrazolone (melting
point 127° to 128°C) can be purified by recrystallisation from ethyl
alcohol. Usually this is not required.
• Bis-pyrazolone (3,3'-dimethyl-1-diphenyl) (4,4'-bis-2pyrazolone)-
(5,5' dione)
• Mixed pyridine-Pyrazolone reagent- Mix 125 mL of the filtered
saturated aqueous solution of pyrazolone with a filtered solution
containing 0.025 gm bis pyrazolone dissolved in 25 mL pyridine.
Several minutes of mixing is usually necessary to dissolve the bis-
pyrazolone in pyridine.
Note- Prepare the reagent daily. This reagent develops a pink colour on
standing
• Standard silver nitrate solution- Dissolve 3.27 gm of silver nitrate in
1 litre of distilled water. Store in dark bottle.
1 mL of this solution= 1 mg CN
9. Pyridine-barbituric acid reagent Method:
• CholoramineT- Solution: Dissolved 1.0 gm white, water soluble
powder in 100 mL water. Prepare a weekly and store in refrigerator.
 Stock cyanide solution: Dissolve approximately 1.6 gm NaOH and
2.51 gm KCN in 1 L distilled water. standardized against standard
silver nitrate (AgNO3) titrant using 25 mL KCN solution. Check titer
weekly because the solution gradually loses strength; 1mL= 1 mg
CN-
 Standard cyanide solution: Based on the concentration determined
for the KCN stock solution (as above) calculate volume required
(approximately 10 mL) to prepare 1 liter of 10 μ g CN- /mL. Dilute
with NaOH dilution solution . Dilute 10 mL of the 10 μg CN $^{\circ}$ /mL
solution to 100 mL with the NaOH dilution solution; 1.0 mL=1.0 μ g
CN ⁻ . Prepare fresh daily and keep in a glass-Stoppered bottle.
(CAUTION- toxic; take care to avoid ingestion)
• Pyridine-barbituric acid reagent: Place 15 gm barbituric acid in a
250mL volumetric flask and add just enough water to wash sides of
Hask and wet parbituric acid. Add /5 mL pyridine and mix. Add 15
mil conc. nyurocmoric aciu (HCI), mix, and cool to room
temperature. Drute to volume and mix until Darbituric acid is
uissolveu. The solution is stable for approximately o months in
develops
 Acotato huffor: Dissolve 410 gm sodium sestate tribudrate
• Acetate buller. Dissoive 410 gill Soululli acetate ti lliyurate.

	$NaC_2H_3O_2.3H_2O$ in 500 mL of water. Add glacial acetic acid to adjust			
	to pH 4.5, approximately 500 mL.			
	• Sodium Hydroxide dilution solution: Dissolve 1.6 gm NaOH in 1 L			
	distilled water.			
Sample Preparation	1. The sample should be collected in 2- litre polyethylene bottle and			
	analyzed as soon as possible after collection			
	2. Samples should be preserved by addition of sufficient hydroxide to			
	raise the pH to 11.0 or above and be stored in a cool place.			
Method of analysis	1. Distillation			
	• Add 500 mL sample to the boiling flask. Add 10 mL of sodium			
	hydroxide solution to gas scrubber and dilute, if necessary, with			
	distilled water to obtain an adequate liquid depth in the absorber.			
	Do not use more than 225 mL total volume of absorber solution.			
	When sulphide generation from the distilling flask is anticipated,			
	add 50 or more mg powdered lead carbonate to the absorber			
	solution to precipitate sulphide. Connect the train, consisting of			
	boiling flask air inlet, flask condenser, gas washer, suction flask trap			
	and aspirator. Adjust suction so that approximately 1 air bubble per			
	second enters the boiling flask. The air rate will carrying hydrogen			
	cyanide gas from flask to absorber and usually will prevent a			
	reverse flow of hydrogen cyanide gas through the air inlet. If this air			
	rate does not prevent sample backup in the delivery tube, increase			
	air flow rate to 2 air bubbles per second. Observe air purge rate in			
	the absorber where the liquid level should be raised not more than			
	6.5 to 10 mm. Maintain airflow through the reaction			
	• Add 2 gm of Sulphamic acid through the air inlet tube and wash			
	down with distilled water			
	• Add 50 mL of concentrated support acid through the air inlet tube			
	with distilled water and let air mix flask contents for 3 minutes. Add			
	20 mL of magnesium chloride reagent through air linet and wash			
	on heating			
	Oli liedtilig.			
	Heat with rapid boiling, but do not nood condenser linet of permit			
	refluxing is indicated by reflux rate of 40 to 50 drops (min from the			
	condenser lin. Reflux for at least 1 hour. Discontinue heating but			
	continue air flow Cool for 15 minutes and drain gas washer			
	contents into senarate container Rinse connecting tube between			
	condenser and gas washer with distilled water, and rinse water to			
	drained liquid, and make upto 250 mL in a volumetric flask.			
	2. For colorimetric measurement (Bv pyridine-Pyrazolone			
	reagent)			
	 Transfer 15 mL of distillate to a 50 mL beaker. 			
	• To prepare standard solutions for the calibration curve, use cvanide			
	standard 1 mL = 1 mg CN. Pinette 0 (blank), 0.2, 0.5, 0.8 & 1.0 mL			
	1			
---------------------------	---	--	--	--
	into 50 mL beaker and make up to 15 mL with 0.2 N sodium			
	hydroxide solution proceed with 4.8.3 to 4.8.7, treating samples and			
	standards in the same manner.			
	• Adjust pH at 6-7 with acetic acid (4.7); transfer to 25 mL volumetric			
	flask			
	• Add 0.2 mL chloramines- T solution and mix. Allow 2 minutes for			
	the reaction.			
	• Add 5.0 mL mixed pyridine- pyrazolone reagent (4.8.7) and make up			
	to the mark, mix allow 20 minutes for colour development			
	• Read absorbance at 620 nm in a 1 cm cell 5.2.7 As a check on the			
	distillation step, periodically process cyanide standard solutions			
	through the complete procedure			
	3. For colorimetric measurement (By Pyridine-barbituric acid			
	reagent)			
	• Preparation of standard curve: Pipette a series of standards			
	containing 1 to 10 μ g CN ⁻ into 50mL volumetric flasks (0.02 to 0.2 μ g			
	CN-/mL). Dilute to 40 mL with NaOH dilution solution. Use 40 mL of			
	NaOH dilution solution as blank. Develop and measure absorbance			
	in 10mm cells as described below for both standards and blank. For			
	concentrations lower than 0.02 μ g CN ⁻ / ml use 100 mm cells.			
	Recheck calibration curve periodically and each time a new reagent			
	is prepared			
	 Color Development: Pipette a portion of absorption solution into a 			
	50mLvolumetric flask and dilute to 40 mL with NaOH dilution			
	solution. Add 1 mL acetate buffer and 2 mL chloramines-T solution,			
	stopper, and mix by inversion twice. Let stand exactly 2 min.			
	• Add 5 mL pyridine-barbituric acid reagent, dilute to volume with			
	distilled water, mix thoroughly and let stand exactly 8min. Measure			
	absorbance against distilled water at 578 nm. Measure absorbance			
	of blank (0.0 mg CN^2/L) using 40 mL NaOH dilution solution and			
	procedures for color development.			
Calculation with units of	For colorimetric measurement (By pyridine-Pyrazolone reagent)			
expression	Prepare a calibration curve derived by plotting concentrations			
	versus Absorbances			
	• Determine the micrograms of cyanide in the samples by comparing			
	on calibration curve.			
	Calculate the cyanide concentration as follows:			
	mg/L , $CN = A \times B$			
	$C \times D$			
	Where			
	A= cyanide determined in mg by calibration graph			
	B= diluted absorbing solution in mL			
	C= original sample in mL, and			
	D = sample taken for colorimetric measurement in mL			
	For colorimetric measurement (By Pyridine-barbituric acid reagent)			

	• Use the linear regression feature available on most scientific		
	calculators, or compute slope and intercept of standard curve as		
	follows:		
	$M = n \sum ca - \sum c \sum a$		
	$n \overline{\sum} a^2 - \overline{(\sum} a)^2$		
	$b = \sum \underline{a} \underline{2} \sum \underline{c} - \sum \underline{a} \sum \underline{a} \underline{c}$		
	$\overline{2n}\overline{\Sigma a^2} - (\overline{\Sigma a})^2 \overline{a}$		
	Where:		
	a= absorbance of standard solution,		
	c = concentration of CN in standard.mg/L		
	n= number of standard solutions		
	m - slope of standard surve and		
	h interest or a suis		
	b= intercept on c axis		
	Include the blank concentration, 0.0 mg CN-/L and blank absorbance in the		
	calculations above.		
	CN ⁻ , mg/L = (ma₁ + b) x <u>50</u> x <u>250</u>		
	X Y		
	Where		
	X = absorption solution mL		
	X = absolption solution, mL, Y = original sample mL and		
	a1= absorbance of sample solution.		
Inference	NA		
(Qualitative Analysis)			
Reference	• IS 3025 (PART 27)-1986		
	• APHA 4500 CN		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

VERVERVENCE SSOUTH VIENTE AND	Determination of Cyanide by Selective Electrode Method				
Method No.	FSSAI14.034:2024	Revision No. & Date	0.0		
Scope	Cyanide refers to all of the CN groups in cyanide compounds that can be determines as the cyanide ion, CN; by the methods used. The cyanide compounds in which cyanide can be obtained as CN- are classed as simple and complex cyanide. Two methods for determination of total cyanides in water have been given				
Caution	Cyanide is highly toxic, to preparing solution	Cyanide is highly toxic, take care to avoid ingestion; use gloves while preparing solution			
Principle	Cyanide in the alkaline distillate from the preliminary treatment, as given in distillation step of cyanide estimation by colorimetric method can be determined potentiometrically by using a cyanide in selective electrode in combination with a double junction reference electrode and a pH meter having an expanded millivolt scale or specific ion meter				
Apparatus/Instruments	 Expanded scale pH meter or specific ion meter Cyanided-ion-selective electrode Reference electrode, double junction Magnetic mixer with TFE coated stirring bar 				
Materials and Reagents	 Stock standard cyanide solution Sodium hydroxide dilutent Intermediate standard cyanide solution Dilute standard cyanide solution Potassium nitrate solution 				
Preparation of Reagents	 1. Stock standard cyanide solution 2. Sodium hydroxide dilutent- Dissolve 1.6 gm sodium hydroxide in water and dilute to 1 litre 3. Intermediate standard cyanide solution – Dilute a calculated volume (approx. 100 mL) of stock potassium cyanide solution, based on the determined concentration, to 1000 ml with sodium hydroxide diluent. Mix thoroughly; 1 mL = 100 μg CN- 4. Dilute standard cyanide solution- Dilute 100 mL intermediate cyanide standard solution to 1000 mL with sodium hydroxide diluents; 1.00 mL = 10.0 μg CN Prepare daily and keep in a dark, glass Stopperd bottle 5. Potassium nitrate solution- Dissolve 100 gm potassium nitrate in water and dilute to 1 liter. Adjust to pH 12 with potassium hydroxide. This is the outer filling solution for the double-junction reference electrode. 				
Sample Preparation					
Method of analysis	1. Calibration Use the dilute and intender hydroxide diluent to pro- mg CN-/1. Transfer approximations into a 250 mL	ermediate standard cyanide epare a series of three stand oproximately 100 mL of ea beaker pre-rinsed with a sm	solutions and sodium lards, 0.1, 1.0 and 10.0 ach of these standard nall portion of standard		

	being tested. Immerse CN- and double-junction reference electrodes. Mix				
	well on a magnetic stirrer at 27°C maintaining as closely as possible the				
	same stirring rate for all solutions. Always progress from the lowest to the				
	highest concentration of standard otherwise equilibrium is reached only				
	slowly. The electrode membrane dissolves in solutions of high cyanide				
	concentration; do not use with a concentration above 10 mg/L. After				
	making measurements remove electrode and soak in water.				
	After equilibrium is reached (at least 5 min and not more than				
	10 min) record potential (millivolt) readings and plot CN- concentrations				
	versus readings on semi-logarithmic graph paper. A straight line with a				
	slope approximately 59 m V per decade indicates that the instrument and				
	electrodes are operating properly. Record slope of line obtained				
	(millivolts/decade of concentration). The slope may vary somewhat from				
	the theoretical value of 59.2 mV per decade because of manufacturing				
	variation and reference electrode (liquid junction) potentials. The slope				
	should be a straight line and is the basis for calculating sample				
	concentration				
	2. Measurement of sample				
	Place 100 mL of absorption liquid obtained into a 250 mL beaker. When				
	measuring low cyanide concentrations, first rinse beaker and electrodes				
	with a small volume of sample. Immerse cyanide and double- junction				
	reference electrodes and mix on a magnetic stirrer at the same stirring				
	rate used for calibration. After equilibrium is reached (at least 5 min and				
	not more than 10 min) record values indicated on ion meter or found				
	from graph prepared above. Calculate concentration as given below.				
Calculation with units of	Cyanide, mg/L = $\underline{A \times B}$				
expression	C				
	Where				
	A= mg cvanide per liter found from meter reading or graph				
	B= total volume of absorption solution after dilution, mL; and				
	C= volume of original sample used in the distillation, mL				
Inference	NA				
(Qualitative Analysis)					
Reference	• IS 3025 (PART 27)-1986				
	• APHA 4500 CN				
Approved by	Scientific Panel on Methods of Sampling and Analysis				

एफ एस एस एआई जिन्द्र विकास सरकार क्यिलन्स मल्ले विकास का विकास का किल्ला मल्ले विकास का विकास का किलाम मल्ला किलाम का मिलाम का मलाम	Determination of Calcium by EDTA Titrimetric Method				
Method No.	FSSAI14.035:2024	Revision No. & Date	0.0		
Scope	The average abundance	of Ca in the earth's crust is 4.	.9%: in soils it is 0.07 to		
	1.7 % in streams it is a	bout 15 mg/L; and in grour	ndwater it is from 1 to		
	(calcite) and calcium-ma	gnesium carbonate (dolomit	ce). Calcium compounds		
	are widely used in pl	narmaceuticals photography	y, lime, de-icing salts,		
	pigments, fertilizers, and	l plasters. Calcium carbonate	e solubility is controlled		
	major buffering mecha	nism in fresh waters. Hard	dness is based on the		
	concentration of calciu	m and magnesium salts, a	nd often is used as a		
	measure of potable wate	r quality.			
Caution	This method explains the	titrimetric process of calciu	Im.		
Caution	interference with the ca	lcium determination: Coppe	r, 2 mg/L; ferrous iron		
	20 mg/L; ferric iron,	20 mg/L; manganese 20	mg/L; zinc 5 mg/L.		
	Orthophosphate precipi	tates calcium at the pH of t	the test. Strontium and		
	barium give a positive	interference and alkalinity	in excess of 300 mg/L		
Principle	In a solution containing both calcium and magnesium, calcium can be				
F	determined directly with EDTA (ethylenediamine tetra-acetic acid or its				
	salts) when the pH is made sufficiently high (12 to 13) so that the				
	magnesium is largely pro	ecipitated as the hydroxide a the calcium	and an indicator is used		
Apparatus/Instruments	Hot plate- One 30 x 50 cr	n heating surface is adequate	e		
Materials and Reagents	a. Quality of Reagents. Unless specified otherwise, pure chemicals and distilled water shall be used in tests				
	b. Sodium Hydroxide S	olution- 1N			
	c. Hydrochloric Acid- 0	.1 N			
	d. Indicator solution: A e. Murexide (ammoniu	ny of the following indicates m purpurate) indicator	shall be used.		
	f. Patton and Reeder's	indicator			
	g. Standard EDTA				
Preparation of Reagents	a. Quality of Reagents. Unless specified otherwise, pure chemicals and				
	distilled water shall	be used in tests.			
	b. Sodium Hydroxide Solution- 1N				
	c. Hydrochloric Acid- U.1 N d. Indicator solution: Any of the following indicates shall be used				
	e. Murexide (ammonium purpurate) indicator solution: This indicator				
	changes from pink to purple at the end point. An indicator solution can				
	ethylene glycol. Water solutions of the dye are not stable for longer than				

 a day. A ground mixture of the dye powder and sodium chloride provides a stable form of the indicator. It is prepared by mixing 200 mg of murexide with 100 gm of solid sodium chloride and grinding the mixture to 300 to 425 microns. The titration should be performed immediately after the addition of the indicator because it is unstable under alkaline conditions. End point recognition is facilitated by the preparation of color comparison blank containing 2.0 ml of sodium hydroxide solution, 0.2 gm of solid indicator mixture (or 1 to 2 drops if a solution is used), and sufficient standard EDTA titrant (0.05 to 0.10 mL) to produce an unchanging color. f. Patton and Reeder's indicator solution: This indicator solution permits the direct titration of calcium in the presence of magnesium. It produces a sharp color change from wine red to pure blue at the end point. It is prepared by mixing 1 gm of Patton and Reeder's (Eriochrome blue
 Black R) reagent with 100 gm of sodium sulphate or potassium sulphate. g. Standard EDTA Solution- 0.01 M: Dissolve 3.75 gm of disodium ethylenediamine tetra-acetate, dihydrate in water and make up to 1000 mL in a volumetric flask. Standardize this with standard zinc solution. Pipette out 25 mL of standard zinc solution in a 250 mL conical flask. Adjust the pH to approximately 10 with buffer solution. Dilute to about 100 mL and add 3 to 4 drops of Eriochrome Black T indicator solution. This will give red color. Titrate with 0.01 M EDTA solution to a clear blue end point free from violet tinge. This solution will be slightly stronger than 0.01 M, dilute the solution to exactly 0.01 M by adding calculated amount of water and recheck the strength by titrating 25 mL of standard zinc solution by exactly the same manner as mentioned above. This should consume exactly 25.0 mL of standard EDTA solution.
Alternatively, calcium solution may be used for standardization of EDTA subject to the availability of certified CaCO3 according to the method given below: WATER ANALYSIS 2016 147 Weigh 3.723 gm of dry analytical reagent grade disodium ethylene diamine tetra acetate, dihydrate, dissolve in distilled water and dilute to 1000 mL. Check the strength by standardizing against standard calcium solution. An exactly 0.01 M solution is equivalent to 0.4008 mg of calcium per milliliter.
 h. Stock Calcium Solution: Dry calcium carbonate (Ca CO3) at 180°C for one hour and allow it to cool in a desiccator. Suspend 2.50±0.01 gm of the dried material in 100 mL of water. Add slowly the minimum amount of 0.1N hydrochloric acid to dissolve the calcium carbonate (approximately 500 mL). Boil briefly to expel dissolved carbon dioxide, cool and transfer the solution quantitatively to a 1000 mL volumetric flask and dilute to mark with 0.1N hydrochloric Acid. i. Standard Calcium Solution: Dilute 100 mL of the stock solution (5.5) to 250 mL using 0.1N hydrochloric acid. This solution is equivalent to 1.00mg of calcium carbonate or 0.400 8 gm of calcium per milliliter.

	Store the solution in a polyethylene bottle.			
Sample Preparation	Mix the sample pretreated, if so required and transfer a suitable volume (50 to 100 mL) to 250 mL conical flask or a beaker. Add 5 mL of concentrated nitric acid and evaporate on a hotplate at a slow boil to the lowest volume possible (about 15 to 20 mL) before precipitation or salting occurs. Add 5 mL of concentrated nitric acid, cover with a watch glass and heat to obtain a gentle refluxing action. Continue heating and adding concentrated nitric acid as necessary until digestion is complete as shown by a light colored clear solution. Do not let sample dry during digestion. Add 1 to 2 mL of concentrated nitric acid and warm slightly to dissolve any remaining residue. Wash down beaker walls and watch glass with water and then filter, if necessary. Transfer the filtrate to a 100 mL volumetric flask. Cool, dilute to mark and mix thoroughly. Take a portion of this solution for the determination of calcium.			
Method of analysis	Because of the high pH used in this procedure, the titration should be performed immediately after the addition of the alkali and indicator. Use 50mL of sample or a smaller portion diluted to 50 mL so that the calcium content is about 5 to 10 mg. Analyze hard waters with alkalinity higher than 300 mg/LCaCO3 by taking a smaller aliquot and diluting to 50 mL or by neutralization of the alkalinity with acid, boiling for one minute and cooling before beginning the titration. Add 2.0 mL of sodium hydroxide solution or a volume sufficient to produce pH of 12 to 13. Stir. Add 0.1 to 0.2 gm of the indicator murexide-sodium chloride mixture selected (or 1 to 2 drops if a solution is used). Alternatively, approximately 1 gm of the mixture of Patton and Reeder's reagent and sodium sulphate or potassium sulphate may be used. Add EDTA titrant slowly with continuous stirring to the proper end point. Check the end point by adding 1 to 2 drop of titrant in excess to make certain that no further color change occurs.			
Calculation with units of expression	Calcium (CaCO3) mg/L= $\frac{A \times CF \times 1000}{V}$ Calcium (Ca2+) mg/L = $\frac{A \times CF \times 1000 \times 0.4004}{V}$			
Inference	VWhere A= volume in mL of EDTA solution used for titration.CF= mass in mg of calcium equivalent to 1 mL of EDTA solution,(X1/X2 correction factor for standardize ion of EDTA)X1 = volume in mL of standard calcium solution taken for standardizationX2 = volume of mL of EDTA solution used in the titrationV= volume in mL of the sample taken for the test.NA			
(Qualitative Analysis)				

Reference	IS 3025 (PART 40)
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआई SSSC Tracelle are a care of the second real Galary and Exceeding Annony of this warraw and a ufcara are anny working second of the second second second	Determination of Calcium by Permanganate Titration Method			
Method No.	FSSAI 14.036:2024	Revision No. & Date	0.0	
Scope	The average abundance of Ca in the earth's crust is 4.9%: in soils it is 0.07 to 1.7% in streams it is about 15 mg/L; and in groundwater it is from 1 to >500 mg/L. The most common forms of calcium are calcium carbonate (calcite) and calcium-magnesium carbonate (dolomite). Calcium compounds are widely used in pharmaceuticals photography, lime, de-icing salts, pigments, fertilizers, and plasters. Calcium carbonate solubility is controlled by pH and dissolved CO2. The CO2, HCO3 – and CO3 2- equilibrium is the major buffering mechanism in fresh waters. Hardness is based on the			
	concentration of calciu measure of potable wate This method explains th water.	m and magnesium salts, an er quality. e titrimetric process by Perm	nd often is used as a nanganate of calcium in	
Caution	aluminium, iron, manganese, phosphate and suspended matter. Strontium may precipitate as oxalate and cause high results. In such cases, determine strontium by flame photometry. Interference of silica may be eliminated by classical dehydration procedure. Precipitate aluminum, iron, and manganese by ammonium hydroxide after treatment with persulphate. Precipitate phosphate as the ferric salt. Remove suspended matter by centrifuging or by filtration through sintered glass crucible or a cellulose acetate membrane.			
Principle	The calcium present in the solution is precipitated as oxalate filtered off and washed. The washed precipitate is dissolved in dilute sulphuric acid and the oxalic acid liberated is titrated against standard potassium permanganate solution. The homogeneous precipitation approach using the urea hydrolysis method is best suited for the precipitation of calcium oxalate. Initially the pH of the solution is adjusted to approximately 1.0 by adding sufficient amount of acid. This is followed by ammonium oxalate and urea. Upon boiling the solution, the urea gradually undergoes hydrolysis and the pH rises to the point of calcium oxalate precipitation. The precipitate is filtered off immediately after formation. This eliminates the digestion period which is otherwise required. The solution must remain clear until boiling is commenced to hydrolyse the urea.			
Apparatus/Instruments	Beakers with Glass Rod - 400mL capacity and cover glass.Filtration Set Up - A coarse filter paper or a small filter paper supported in a			
Materials and Reagents	 Gooch crucible with suct Hydrochloric Acid Methyl Red Indicator Ammonium Oxalate S 	ion. Solution		

	•	Urea 4.6 Dilute Sulphuric Acid		
	•	Sodium Oxalate		
	•	Potassium Permanganate Solution		
Preparation of Reagents	a.	Quality of Reagents Unless specified otherwise pure chemicals and distilled water shall be used in the tests. NOTE - Pure Chemicals shall mean chemicals that do not contain impurities which affect the results of analysis.		
	р. с.	Methyl Red Indicator Solution Dissolve 100 mg of methyl red sodium salt in 100 mL of hot water or dissolve in 60 mL of ethanol dilute with 40 mL of water.		
	d. e. f.	Ammonium Oxalate Solution- Saturated solution in water. Urea 4.6 Dilute Sulphuric Acid - 1 N Sodium Oxalate		
	g.	Standardization of Potassium Permanganate Solution. Weigh about 1.6 gm of AR grade potassium permanganate on a watch glass, transfer it to a 1500mL beaker, add 1 litre of water, cover the beaker with a watch glass, heat the solution to boiling; boil gently for 15-30 minutes and allow the solution to cool to the laboratory temperature. Filter the solution through a funnel, containing a plug of purified glass wool, or through a Gooch crucible provided with a pad of purified asbestos, or most simply, through a sintered glass or porcelain filtering crucible. Collect the filtrate in a vessel which has previously been cleaned with chromic acid mixture and then thoroughly washed with distilled water. Store the filtered solution in a clean, glass stoppered bottle. Keep it in the dark or in an amber coloured bottle or in diffused light except while in use.		
		Weigh out accurately about 1.7 gm of dry sodium oxalate into a 250mL volumetric flask, dissolve it in water and make up to the mark. Pipette out 25mL of this solution into a 400mL beaker and add 150mL of 1 N sulphuric acid. Titrate this solution rapidly at room temperature with potassium permanganate solution tobe standardized while stirring, to a slight pink end point that persists 'for at least 1 minute. Do not let the temperature fall below 85°C. If necessary, warm beaker contents during titration. Repeat the titration with two more aliquots of the oxalate solution.		
		Calculate the normality of the permanganate solution using the following relationship:		
		Normality of potassium = <u>100 x m1</u> Permanganate solution 67 x V1		
		Where m1= mass in gm of sodium oxalate taken, and		

	V1= volume in mL of the potassium permanganate solution consumed		
	by 25mL of the oxalate solution.		
Sample Preparation	Mix the sample pretreated, if so required and transfer a suitable volume (50 to 100 mL) to 250 mL conical flask or a beaker. Add 5 mL of concentrated nitric acid and evaporate on a hotplate at a slow boil to the lowest volume possible (about 15 to 20 mL) before precipitation or salting occurs. Add 5 mL of concentrated nitric acid, cover with a watch glass and heat to obtain a gentle refluxing action. Continue heating and adding concentrated nitric acid as necessary until digestion is complete as shown by a light colored clear solution. Do not let sample dry during digestion. Add 1 to 2 mL of concentrated nitric acid and warm slightly to dissolve any remaining residue. Wash down beaker walls and watch glass with water and then filter, if necessary. Transfer the filtrate to a 100 mL volumetric flask. Cool, dilute to mark and mix thoroughly. Take a portion of this solution for the determination of calcium.		
Method of analysis	Pipette out 50 mL of the sample (containing about 10 mg of calcium) into a 250mL beaker. Add dilute hydrochloric acid drop by drop to a pH of approximately 1.0. Add a few drops of methyl red indicator solution (sufficient acid must be present in the solution to prevent the precipitation of calcium oxalate when ammonium oxalate solution is added). Add about 10 mL of saturated ammonium oxalate solution gently until the methyl red changes colour to yellow (pH 5). Filter through a coarse filter paper or with suction on a small filter paper supported in a Gooch crucible. Wash the precipitate with cold water till the filtrate is free from chloride. Transfer the filter paper and the precipitate (or the Gooch crucible and precipitate) to the original beaker, dissolve the precipitate in hot dilute sulphuric acid and titrate immediately with standard 0.05N potassium permanganate solutions.		
Calculation with units of	Calcium (as Ca) mg/L = <u>A X B X 100</u>		
expression	V		
	where A = volume in mL of permanganate solution used for the titration, B = mass in mg of calcium equivalent to 1 mL of potassium permanganate solution, and V = volume of the sample taken for the test.		
Interence (Qualitative Analysis)	NA		
Reference	IS 3025 (PART 40)		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

TESSECTION AND A MARKEN AND AND A MARKEN AND AND A MARKEN AND AND A MARKEN AND AND AND A MARKEN AND AND A MARKEN AND AND AND A MARKEN AND AND AND AND AND AND AND AND AND AN	Determination of Phenol				
Method No.	FSSAI 14.037:2024	Revision No. & Date	0.0		
Scope	Mineral water, Packaged Drinking Water (other than Mineral Water), Drinking Water (Purified)				
Caution	Phenol Stock Solution	DLE WITH CARE'			
Principle	Steam-distillable phenols react with 4-aminoantipyrine at pH7.9 \pm 0.1 in the presence of potassium ferricyanide to form a colored antipyrine dye. This				
	dye is extracted from measured at 460nm. Th from 1.0 mg/L to over 25	water with chloroform as nis method covers the phen- 50 mg/L with a sensitivity of	nd the absorbance is ol concentration range 1 mg/L.		
Apparatus/Instruments	 a. Photometric equipment: A spectrophotometer for use at 460 nm equipped with absorption cells providing light paths of 1 to 10 cm, depending on the absorbances of the colored solutions and the individual characteristics of the photometer. b. Filter Funnels: Buchner type with fritted disk. c. Filter Paper: Alternatively use an appropriate 11-cm filter paper for filtering CHC13 extracts instead of the Buchner-type funnels and anhydrous Na2SO4. d. pH Meter. e. Separating Funnel: 1000-mL, Squibb form, with ground glass stoppers and PTEE stoppeds. At least 9 are required 				
Materials and Reagents	 a. Stock Phenol Sol b. Intermediate Phe c. Standard Phenol d. Bromate-bromid e. Hydrochloric aci f. Standard sodium g. Starch solution h. Ammonium hydri i. Phosphate buffer j. Potassium ferricy k. Chloroform (CHC l. Sodium sulfate, a m. Potassium iodide 	ution enol Solution Solution d (HCl), conc. a thiosulfate titrant, 0.025 M coxide (NH4OH), 0.5 N c solution yanide solution Cl3). mhydrous NazSO4, granular. e (Kl), crystals.			
Preparation of Reagents	 All reagents should be prepared with distilled water free from phenols and chlorine. a. Stock phenol solution: Dissolve 100 mg phenol in freshly boiled and cooled reagent water and dilute to 100 mL Ordinarily this direct weighing yields a standard solution. If extreme accuracy is required, standardize as follows: 1) To 100 mL water in a 500-mL glass-stoppered conical 				

	flask, add 50.0 mL stock phenol solution and 1 0.0 mL bromate bromide
	solution. Immediately add 5 mL conc HCl and swirl
	gently. If the brown color of free bromine does not persist, add
	10.0-mL portions of bromate-bromide solution until it does. Keep
	the flask stoppered and let stand for 10 min; then add approximately 1 g KI.
	Usually four 10-mL portions of the bromate bromide solution are required
	if the stock phenol solution
	contains 1000 mg/L phenol.
	2) Prepare a blank in exactly the same manner, using reagent
	water and 10.0 mL bromate-bromide solution. Titrate the blank
	and sample with 0.025 M sodium thiosulfate, using a starch solu tion
	indicator.
	3) Calculate the concentration of the phenol solution as follows:
	mg/L phenol = 7.842[(A x B)-C]
	where:
	A = mL thiosulfate for blank.
	B = mL bromate-bromide solution used for sample divided by 10, and
	C = mL thiosulfate used for sample.
	h Intermediate nhenol solution: Dilute 1 00 mL stock nhenol
	solution in freshly boiled and cooled reagent water to 100 mL 1 mL
	= 10.0 mg phenol. Prenare daily
	c Standard phenol solution: Dilute 50.0 mL intermediate phenol
	solution to 500 mL with freshly boiled and cooled reagent water: 1
	mL = 1.0 mg nhenol Prenare within 2 h of use
	d Bromate-bromide solution : Dissolve 2 784 g anhydrous KBrO3 in
	water add 10 g KBr crystals dissolve and dilute to 1000 mI
	e Standard sodium thiosulfate titrant 0.025 M: Dissolve 6.205 g
	Na 2 S2O3 · 5H2O in reagent water Add 1 5 mL 6 M NaOH or 0.4 g
	solid NaOH and dilute to 1000 mL Standardize with notassium bi-
	iodate [KH(103)z] solution
	f Starch solution : Use either an aqueous solution or soluble starch
	nowder mixtures. To prepare an aqueous solution dissolve 2 g
	laboratory grado soluble starch and 0.2 g solicylic acid (as a
	nreservative) in 100 mL hot reagent water
	g Ammonium hydroxide (NH40H) 0 5 N: Dilute 35 ml fresh conc
	NH40H to 1 L with water
	h Phosphate buffer solution: Dissolve 104.5 g K2HPO4 and 72.3 g
	KH2POA in water and dilute to 1 L. The nH should be 6.8
	i 4. Aminoantinyring solution: Dissolve 2.0 g.4. aminoantinyring in
	water and dilute to 100 mL. Prenare daily
	i Potassium forrievanido solution: Dissolvo 8.0 g K3Eo(CN)6 in
	water and dilute to 100 mL Filter if necessary Store in a brown
	alass hottle Prenare fresh weekly
Sample Dranaration	Preliminary Stan of Steam Distillation
Sample Freparation	1 Maggira 500 mL of completing a bashon Lower the pU to
	1. Measure 500 mil of sample mild a Deaker. Lower the pri to
	approximately 4.0 with 0.5 percent phosphoric acid. If the sample
	was already preserved using phosphoric acid, omit the addition of

		phosphoric acid again.
	2.	Transfer to the distillation apparatus made up of glass, consisting of
		a 1 litre borosilicate glass distilling apparatus with Graham
		condenser. Distil 450 mL of sample and stop the distillation. When
		boiling ceases, add 50 mL of warm distilled water to the distilling
		flask and resume distillation until 500 mL have been collected.
	3.	If the distillate is turbid, filter through a pre washed membrane
		filter.
Method of analysis	1.	Place 500 mL of distillate or a suitable portion containing not more
		than 50 mg phenol, diluted to 500 mL in 1 litre beaker.
	2.	Prepare a 500 mL distilled water blank and a series of 500 mL
		phenol standards containing 5, 10, 20, 30, 40 and 50 mg phenol.
	3.	Adjust samples, blank, and standards to pH 1 0± 0.1 with 10 mL
		of the following buffer solution (16.9 g NH4Cl in 143 mL conc
		NH40H diluted to 250 mL with reagent water.)
	4.	Alternatively, for greater sensitivity to chlorinated phenols.
		adjust samples, blank, and standards to pH 7.9: Add 12.0 mL 0.5 N
		NH4OH and immediately adjust pH to 7.9 ± 0.1 with phosphate
		buffer. About 10 mL phosphate buffer are required.
	5.	Transfer to a 1 litre separating funnel, add 3.0 mL aminoantipyrine
		solution, mix well and add 3.0 mL of potassium ferricyanide and let
		color develop for 15 minutes. The solution should be clear and light
		vellow
	6.	Extract immediately with chloroform using 25 mL for 1 to 5 cm cells
	0.	and 50 mL for 10 cm cell. Shake separatory funnel at least 10 times.
		let chloroform settle shake again for 10 minutes and let the
		chloroform settle again
	7.	Filter each chloroform extract through filter paper or fritted glass
	<i>,</i> ,	funnels containing a 5 gm layer of anhydrous sodium sulnhate
	8	Collect dried extracts in clean cells for absorbance measurements
	0.	Do not add more CHC13 or wash the filter papers or funnels with
		CHC13
	9	Read absorbance of sample and standards against the blank at 460
		nm
	10.	Calibration Curve: Prepare a standard curve by plotting the
	201	absorbance values of standards versus corresponding phenol
		concentrations Construct a separate calibration curve for each
		photometer and check each curve periodically to ensure
		reproducibility
		For infrequent non regulatory analysis
	11	For infrequent analysis, prepare only one standard phenol solution
	11.	Prepare 500 mL standard nhenol solution of strength approximately
		equal to the phenolic content of that nortion of original sample used
		for final analysis. Also prenare a 500mL distilled water blank
	12	Measure absorbance of sample and standard phenol solution against
	12.	the blank at 460 nm
		uic biank al tuu iiii

Calculation with units of	After obtaining the absorbance values, depending upon the volume of			
expression	sample chosen for test, calculate the amount of phenol present in 1000 mL			
	as given below: Using calibration curve:			
	μg/L, phenol = <u>A×1000</u>			
	В			
	Where,			
	A = concentration of phenol in μ g in sample from the calibration curve.			
	B = volume in mL of original sample			
	For infrequent non regulatory analysis:			
	μg/L, phenol = <u>C x D x 1000</u>			
	E x B			
	Where,			
	$C = \mu g$ standard phenol solution,			
	D = absorbance reading of sample,			
	E = absorbance of standard phenol solution, and			
	B = mL original sample			
Inference	NA			
(Qualitative Analysis)				
Reference	APHA 5530			
Approved by	Scientific Panel on Methods of Sampling and Analysis			

UUDE CONTRACT OF A CONTRACT O		Determination of Sodium		
Method No.	FSSAI 14.038:2024	Revision No. & Date	0.0	
Scope	This standard prescribes emission photometric m	s method for determination o ethod using flame photometr	f sodium by flame y method.	
	Sodium ranks sixth among the elements in order of abundance and is present in most natural water. The levels may vary from less than 1 mg			
	Na/L to more than 500 mg Na/L. Relatively high concentrations may be found in brines and hard water softened by the sodium exchange process. The ratio of sodium of total cations is important in agriculture and human			
	afflicted with certain concentration. A limiting feed water destined for	diseases require water g concentration of 2 to 3 mg high pressure boilers. Ehen	with low sodium g/L is recommended in necessary, sodium can	
	be removed by the hyd compounds are used i fertilizers and water trea	rogen-exchange process or n many applications, inclue atment chemicals.	by distillation. Sodium ding caustic soda, sat	
	determined is the chief of the elements encounter interference of one alka some are negative. Am interference are CI-, SO The foreign element e employing calibration st samples or by applying instances where the s However, the effects ma sodium concentration ra example, aluminum has may be of serious consec Suspended matter which shall be removed by filtr does not cause interferent Flame photometers op require adding a standa sample. Follow the man concentration. Incorporate a non-ionic	caused by elements office contributing factor for error is red in these analyses, the main li-metal on another. Some end ong the other common io 04 2- and HCO3- in relatively effects cannot be entirely candards closely duplicating an experimentally determine ample contains a single in y be minimized by operating ange or by removal of the in a depressing effect on alkali- quence. In may interfere mechanically ation prior to the analysis. On the and need not be removed erating on the internal st and lithium solution to each mufacturer's instructions for detergent in the standard lith	n flame photometry. Of major effect is due to effects are positive and ns capable of causing y higher concentration. compensated without the composition of the ned correction in those mportant interference. The lowest practical terfering elements. For -metal emission, which by clogging the burner rganic colouring matter I. andard principle may working standard and the optimum lithium	
Principle	proper aspirator functi photometer. A flame photometer m	on when using the interna	the intensity of color	
	imparted to the flame introduced into the fla	of a Meker- type burner me under carefully standar	where the sample is rdized conditions. The	

	intensity of color is proportional to the sodium content in the sample.		
	Sodium is determined at a wavelength of 589 nm.		
Apparatus/Instruments	a. Flame photometer: Either direct-reading or internal standard type		
	or an atomic absorption spectrophotometer in the flame emission		
	mode.		
	b. Glassware: Rinse all glassware's with dilute nitric acid (1:15)		
	followed by several portions of deionized distilled water.		
Materials and Reagents	a. Reagents: Use deionized distilled water to prepare all reagents,		
	calibrations, standards and dilution water.		
Preparation of Reagents	b. Stock sodium solution: Dissolved in deionized distilled water, 2.542		
	gm of sodium chloride dried to constant mass at 140°C and make up		
	to 1000 mL with water, 1 mL = 1mg of sodium.		
	c. Standard lithium Solution: Weigh rapidly 6.109 gm of lithium		
	chloride (LiCl) or 9.93 gm of lithium nitrate (LiNO3) dried overnight		
	in an oven at 105°C. Dissolve in water and make up to 1000 mL with		
	water, 1 mL = 1 mg of lithium.		
	NOTE- prepare a new calibration curve whenever the standard		
	lithium solution is changed.		
Sample Preparation	Direct Intensity Measurement : Prepare a blank and sodium standards in		
	stepped amounts by diluting the stock solutions described 4.4.1 and for any		
	of the following applicable ranges: 0 to 1.0 mg/L, 0 to 10 mg/L or 0 to 100		
	mg/L so that within each range there are equally spaced standards in tenths		
	of the maximum. Starting with the highest calibration standard and working		
	towards the most dilute standard, measure emission at 589 nm for sodium.		
	Repeat the operation with both calibration standards and samples enough		
	number of times to secure a reliable average reading for each solution.		
	Construct a calibration curve, by plotting emission intensity (scale reading)		
	versus concentration of each calibration standard on a linear graph paper.		
	Determine the Sodium concentration of the sample solution from the		
	respective calibration curve.		
	A		
	Internal Standard Measurement: Add an appropriate volume of standard		
	lithium solution to carefully measured volume of sample (or diluted		
	portion), each sodium calibration standard and the blank and then follow all		
	the steps described above.		
Method of analysis			
Calculation with units of	For direct intensity measurement and internal standard measurements		
expression	Sodium = Sodium in mg/L in portion x D.		
-	Where D = dilution Ratio		
Inference	NA		
(Qualitative Analysis)			
Reference	IS 3025(Part 45)		
Approved by	Scientific Panel on Methods of Sampling and Analysis		

एफएसएसएआइ	Determination of Hexavalent Chromium		
Method No.	FSSAI 14.039:2024	Revision No. & Date	0.0
Scope	This standard prescribes of hexavalent chromium The average abundance ranges from 11 to 22 pp is found chiefly in chrom in electroplating, and i added to cooling water chromium exists as Cr chromium exists as CrO strong complexes with a Chromium is considere element for animals. I carcinogenic by inhalat guidelines for natural w water (i.e the softer the The United Nations Fe	s Diphenylcarbbazide method of Cr in the earth's crust om; in streams it averages at the-iron ore (FeO.Cr2O3). Chro n pigments. Chromate com for corrosion control. In m 3+ Cr(OH)2+ Cr(OH)4 - ; it 4 2- and Cr2O7 2- Cr3+ wou mines and would be absorbe of nonessential for plants, Hexavalent compounds hav tion and are corrosive to rater are linked to the hardn water, the lower the permitte ood and Agriculture organ	d for the determination is 122 pm; in soils Cr bout 1 μ g/L. Chromium omium is used in alloys, pounds frequently are atural waters trivalent n the hexavalent from all be expected to form d by clay minerals. but an essential trace re been shown to be tissue. The chromium ness or alkalinity of the ed level for chromium).
	maximum level for irri drinking water standard This standard prescribes of hexavalent chromium	gation water is 100 μg/L. MCL is 100 μg/L for total ch s Diphenylcarbbazide methoe	The U.S. EPA primary romium. d for the determination
Caution	The reaction with Dip Hexavalent molybdenum reagent, but the intensit specified pH. Concentra tolerated. Pentavalent v to 10 times that of chro from permanganate is Iron in concentrations g the color is not strong absorbance is measured	henylcarbazide is nearly s n and mercury salts will reac- ties are much lower than tha ations as high as 200 mg/I anadium interferes, strongly mium will not cause trouble eliminated by prior reduction reater than 1 mg/L may proof and no difficulty is encour spectrophotometrically at 54	specific for chromium. t to form color with the at for chromium at the a of Mo or Hg can be but concentrations up . Potential interference on with sodium azide. duce a yellow color, but ntered normally if the 40 nm.
Principle	This procedure measure chromium is determin Diphenylcarbazide in composition is produce suitable for spectrophot applicable in range of 30	s only hexavalent chromium ned spectrophotometricall acid solution. A red viole ed. The colored complex ob cometric measurements at 5 to 20000μg/l of chromium.	(Cr6+). The hexavalent y by reaction with et color of unknown beys Beer's law and is 40 nm. This method is
Apparatus/Instruments	a. Spectrophoto b. pH meter c. Standard vol NOTE: Thoroughly c acid to remove chror	ometer, for use at 540 nm, wi umetric glassware leaned glassware with nitric nium traces. Do not use glass	th a light path of 1 cm acid or hydrochloric sware previously

treated with chromic acid. New and unscratched glassware will			
minimize chromium absorption on glassware during oxidation			
procedure.			
a. Stock Chromium Solution			
b. Standard Chromium Solution:			
c. Nitric acid- Concentrated (16N).			
d. Sulphuric acid			
e. Methyl orange indicator			
f. Ammonium hydroxide			
g. Potassium permanganate			
h. Sodium Azide solution			
i. Diphenylcarbazide Solution.			
j. Acetone			
a. Stock Chromium Solution: Dissolve 141.4 mg of K2Cr2O7 in water			
and dilute to 100 mL (1.0 mL = 500 μ g of Cr).			
b. Standard Chromium Solution: dilute 1 mL of stock Chromium			
Solution to 100mL; (1 mL = 5 μ g of Cr).			
c. Nitric acid- Concentrated (16N).			
d. Sulphuric acid - Concentrated 36 N; 1:1;6 N and 0.2 N.			
e. Phosphoric acid- concentrated (41N).			
 Methyl orange indicator solution – Dissolve 50 mg of methyl orange in 100mL of Distilled water 			
in 100mL of Distilled water.			
g. Ammonium hydroxide- concentrated (14N)			
h. Potassium permanganate solution- Dissolve 4 gm of KMnO4 in			
100mL Distilled water.			
i. Sodium Azide solution-Dissolve 0.5gm of sodium Azide (NaN3) in			
100mL distilled water.			
J. Diphenylcarbazide Solution- Dissolve 250 mg of 1, 5-			
alphenylcarbazide in 50 mL acetone. Store in an amber colored			
bottle. Discard when the solution becomes discolored.			
Propagation of calibration Curror Dinette out measured volumes of standard			
chromium solution ranging from 2 to 20 mL (to give standards for 10-100			
ug of (r) into 100 mL besters. Make up the volume to about 50 mL with			
water Use 0.2 N H2SO4 and a pH meter to adjust the pH of each solution to			
10 ± 0.3 Transfer quantitatively each of these solutions into 100 mL			
volumetric flasks and add 2.0 mL of dinhenvlcarhazide solution. Dilute to			
100 mL with water mix and let these stand for 5 to 10 min for full color			
development Meanwhile prenare a reagent blank in an identical manner			
using 10mL of water Measure the absorbance of the standard solutions at			
540 nm using reagent blank as reference solution. Construct a calibration			
curve by plotting absorbance values against micrograms (ug) Cr in 100 mL			
of the final volume			
Determination of Hexavalent Chromium (Cr6+): Pipette out a portion of			
filtered sample (filtered through 0.45 µm membrane filter), containing 10 to			

Approved by	Scientific Panel on Methods of Sampling and Analysis			
	chemical) for water and Waste Water: Chromium & Hexavalent chromium.			
Reference	IS: 3025 part 52 –2003- Methods of Sampling and Test (Physical and			
(Qualitative Analysis)				
Inference	NA			
	Where V = volume in mL, of the sample used.			
•	V			
expression	(Cr6+) mg /L = μ g of Cr (in 100 mL of the final solution)			
Calculation with units of	Soluble Hexavalent Chromium			
Method of analysis				
Method of analysis				
	curve			
	of chromium present in 100 mL of the final solution using the calibration			
	as reference solution. From the absorbance data determine the micrograms			
	stand for 5 to 10 min. Measure absorbance at 540 nm using reagent blank			
	diphenylcarbazide solution. Dilute to 100 mL water, mix well and allow to			
	meter Transfer quantitatively into a 100 mL volumetric flak add 20 mL of			
	water Adjust nH of this solution to 1.0 ± 0.3 using 0.2 N H2SO4 and a nH			
	100 µg of Cr into a 100 mL beaker. Make up the volume to about 50 mL with			

स्वारच्य और परिवार कल्याण मंत्रालय Ministry of Health and Family Weldsee		etermination of Total Solid	S
Method No.	FSSAI 14.040:2024	Revision No. & Date	0.0
Scope	The term 'Solid' refers to remains as residue upon temperature. Further employed for drying and the basis of method appl or effluent quality adver solids may include an u consumer and generall waters are unsuitable of solids in waters may be bathing. Analysis of tota unit operations and p treatment and to ass compliance with regular	o the matter either filterable n evaporation and subseque categorization depends up d ignition. Different forms o ied for their determination. S sely in number of ways. Wat infavorable physiological re- y are of inferior palatabilit for many industrial applica e aesthetically unsatisfactory al solids are important to de rocesses in physical and ess its performance evalu- tory agency, wastewater e	e or non- filterable that ent drying at a defined pon the temperature f solids are defined on Solids may affect water ter with high dissolved action in the transient ty. Highly mineralized tions. High suspended y for such purposes as ecide upon the various biological wastewater uation. For assessing effluent limitations for
Caution	various form of solids ac This following method evaporation through hea Highly mineralized wate	t as indicating parameters. describes the Total solid t	content in water by
Caution	magnesium, chloride at require prolonged dry prolonged drying may a and chlorides.	nd/or sulphate may be hy ing, desiccation and rapic lso cause loss of constituent	groscopic. These may d weighing. However, ts, particularly nitrates
	A large amount of resident of resident of the sample should be about 100-200	due in the evaporating basi ; its evaporation during dryi ould be adjusted so that the r) mg.	n may crust over and ng. For this reason, the residue left after drying
	Preservation of the sam as possible. Refrigeration decomposition of solids	ples is not practical. Analysi on or chilling to 4°C, to mi is recommended.	s should begin as soon nimize microbiological
Principle	The sample is evaporate a constant mass in an ov is calculated from increa NOTE- In general by eva 179-181°C values are	d in a weighed dish on a strea en either at 103-105oC or 17 se in mass. porating and drying water sa obtained which conform r	am-bath and is dried to 79-181°C. Total residue amples at 103-105°C or nore closely to those
Apparatus/Instruments	 obtained by summation a. Evaporating Dish- of platinum, nickel, por suitable for all tests. 	of individually determined m of 90 mm diameter, 100 prcelain, silica or borosilica Nickel is satisfactory if resid	ineral salts. mL capacity made of ate glass. Platinum is lue is not to be ignited.

	than 9.0.
	b. Steam-Bath.
	c. Drying Oven- Drying oven with thermostatic control for maintaining
	temperature up to 180 ±2°C.
	d. Desiccator- Provided with a color indicating desiccants.
	e. Analytical Balance- 200gm capacity and capable of weighing to nearest
	0.1 mg
Materials and Reagents	
Preparation of Reagents	
Sample Preparation	Heat the clean evaporating dish to 180°C for 1 hour. Cool desiccate, weigh
	and store in desiccator until ready for use.
	Select volume of the sample which has residue between 25 and 250 mg,
	preferably between 100 and 200 mg. This volume may be estimated from
	values of specific conductance. To obtain a measurable residue; successive
	aliquots of sample may be added to the sample dish.
	Directed this volume to a weighed evenerating dish placed on a steam both
	Further this volume to a weighed evaporating dish placed on a steam-bath.
	should be lowered to approximately 98°C to prevent boiling and splattering
	of the sample After complete evanoration of water from the residue
	transfer the dish to an oven at $103-105^{\circ}$ C or $179-181^{\circ}$ C and dry to constant
	mass that is till the difference in the successive weighing is less than 0.5
	mg. Drving for a long duration (usually 1 to 2 hours) is done to eliminate
	necessity of checking for constant mass. The time for drving to constant
	mass with a given type of sample when a number of samples of nearly same
	type are to be analyzed should be determined by trial.
	Weigh the dish as soon as it has cooled avoiding residue to stay for long
	time as some residues are hygroscopic and may absorb water from
	desiccant which may not be absolutely dry.
Method of analysis	
Calculation with units of	Calculate the total residue using following equation:
expression	Total residue, mg/L = <u>1000 M</u>
	V
	Where,
	M= Mass in mg of total residue, and V= volume in mL of the sample.
	Report in whole numbers for less than 100 mg/L and above 100 mg/L to
	three significant figures. Report the temperature of determination also.
Inference	NA
(Qualitative Analysis)	
Reference	IS:3025 part 15 – 1984 (Reaffirmed 2003)- Methods of Sampling and Test
	(Physical and chemical) for water and Waste Water : (Total Solids)
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआइ		Determination of Nitrite	
Method No.	FSSAI 14.041:2024	Revision No. & Date	0.0
Scope	Nitrite in water is either to reduction of nitrate. unstable. A usual conce tenths of mg/L. Higher Sewage and in biologic chlorinated supplies, le detection, i.e. 0.005mg unchlorinated water. Ve water of unsatisfactory r	due to oxidation of ammon As an intermediate stage in entration in natural water is concentrations are presen ally purified effluents and i evels of nitrite are often l g/L NO2 - N but high ery high nitrite levels are u nicrobiological activity.	ium compounds or due the nitrogen cycle it is s in the range of some t in industrial wastes. n polluted streams. In less than the limit of levels may occur in usually associated with
Caution	Nitrogen trichloride (NC reagents addition is f dihydrochloride first Au3+,Fe3+,Bi3+,Pb2+,Hg results.	Cl3) imparts a false red color followed. It can be minim and then sulphanalic ac g2+ ,Ag+, PtCl6 2- interfere.	when normal order of nized by adding NED cid. Ions like Sb3+, Cupric ions cause low
Principle	Nitrite is determined produced at pH 2.0 to 2. napthyl)- ethylene dian color obeys Beer's law u	through formation of a re 5 by coupling diazotized sulp nine dihydrochloride (NED p to 180 μg/L with 1 cm path	ddish purple azo dye phanalic acid with N- (1 dihydrochloride). The length at 543 nm.
Apparatus/Instruments	Spectrophotometer or spectrophotometer or maximum absorbance no Nessler tubes-matched,	photometer- for use at photometer having a gre ear 540 nm. 50 mL capacity.	543 nm in case of een filter and having
Materials and Reagents	 a. Nitrite free wate b. Sulphanilamide n c. NED dihydrochlo d. Hydrochloric aci e. Sodium oxalate f. Ferrous ammoni g. nitrite solution 	r- reagent oride d- 1:3. um sulphate	
Preparation of Reagents	 Nitrite free wate follows: Add to 1 potassiun hydroxid Add 1 mI mangane solution 1 to 3 mI Redistill 	r- If the distilled water is not liter of distilled water, a sma n permanganate and barium e. Redistill in a borosilicate g of concentrated sulphuric a se sulphate (36.48 gm MnSO to each 1 liter of distilled wat of potassium permanganate as in 4.1.1 above. Use this wa	nitrite free, prepare as ll crystal each of hydroxide or calcium lass bottle. cid and 0.2 mL of 4.H2O/100 mL) cer and make pink with e solution (400 mg/L). ter in making all

	reagents and dilutions.				
	 Sulphanilamide reagent- Dissolve 5 gm of the material in a mixt of 50 mL of concentrated hydrochloric acid and 300 mL of wate Dilute to 500 mL with water. The reagent is stable for several months. 	ture er.			
	3. NED dihydrochloride- Dissolve 500 mg of the material in 500 m water. Store in colored bottle in dark. Replace monthly or when turns dark brown in color.	וL of ו it			
	4. Hydrochloric acid- 1:3.				
	5. Sodium oxalate- 0.05 N. Dissolve 3.350 gm of sodium oxalate (primary standard grade) in 1000 mL of water.				
	6. Ferrous ammonium sulphate- 0.05 N. Dissolve 19.607 gm of fer ammonium sulphate in 20 mL of concentrated sulphuric acid ar water and dilute to1 litre. Standardize with standard dichromat	rous nd te.			
	7. Stock nitrite solution- Dissolve 1.232 gm of sodium nitrite in wa and dilute to 1000 mL (1 mL = 250 μ g of N). Preserve with 1 mI chloroform. Standardize using sodium oxalate (4.5) and standar potassium permanganate solution.	ater L of rd			
	 Intermediate nitrite solution – Calculate the volume, G, of stock nitrite solution required for intermediate nitrite solution from 0 12.5/A, where A is the stock solution in mg/L. Dilute the volum 250 mL with water (1.00 mL= 50.0 µg N). 	G = e G to			
	9. Standard nitrite solution- Dilute 10.00 mL of intermediate nitri- solution to 1000 mL with water (1.00 mL = $0.500 \mu g$ N).	te			
Sample Preparation	If the sample is turbid, filter through a 0.45 μ m membrane filter. To 50 of clear sample neutralized to pH 7 or to a portion diluted to 50mL add of sulphanilamide solution. Let the reagent react for 2 to 8 minutes. Ac mL of NED dihydrochloride solution and mix immediately. Let stand least 10 minutes but not more than 2 hours. Measure absorbance at 54 As a guide, use the following light paths for the indicated nitrite nitriconcentrations:	.0 mL 1 mL 1d 1.0 for at 3 nm. rogen			
	Light Path Length, cm Nitrite Nitrogen, µg/L				
	1 2-25				
	5 2-6				
	10 2				
	Run parallel checks frequently against nitrite standards.				

Method of analysis	Color standards for visual comparison - Prepare a suitable series of
	visual color standards in Nessler tubes by adding the following volumes of
	standard nitrite solutions and diluting to 50 mL with water: 0, 0.1, 0.2, 0.4,
	0.7, 1.0, 1.4 1.7, 2.0 and 2.5 mL, corresponding, respectively to 0, 1.0, 2.0,
	4.0, 7.0, 10, 14, 17, 20 and 25 μ g of nitrite per liter. Develop color as
	described above. Compare samples to visual standards in matched Nessler
	tubes between 10 and 120 minutes after adding NED dihydrochloride
	reagent. Select the concentration where the sample tube color matches the
	standard tube color
Calculation with units of	Calculate nitrite nitrogen from the following:
expression	Nitrite Nitrogen (as NO2-N) per liter= <u>µg NO2–N (in 52 mL final volume)</u>
	mL of sample
Inference	
(Qualitative Analysis)	
Reference	IS:3025 part 34 – 1988 (Reaffirmed 2003)- Methods of Sampling and Test
	(Physical and chemical) for water and Waste Water: Nitrogen
Approved by	Scientific Panel on Methods of Sampling and Analysis
11 V	

UUD UUD UUD UUD UUD UUD UUD UUD UUD UUD	D	etermination of Mineral oi	1
Method No.	FSSAI 14.042:2024	Revision No. & Date	0.0
Scope	Mineral oil in environme parameters. The present oil in environmental mat is not found to be a good agricultural risk.	ental matrices is one of the m standard methods for the de crices give a total concentrati estimate for ecotoxicologica	ost often measured etermination of mineral on. This concentration l, human and
Caution	Thoroughly rinse cuvette sample(s).	e with distilled TCA while rea	ading blank(s) and
Principle	The sample of water is e extraction solvent follow peak heights at 2930 ± 5	xtracted with tetrachloroethy red by analysis by infra-red (cm ⁻¹	ylene (TCE) as IR) spectrometry using
Apparatus/Instruments	Apparatus/Instruments: Filter paper – Wl Cells – Infra- red 5cm path length FTIR- Fourier Tr	natman No. 40 or equivalent , silica/quartz (1 or 5cm path will be appropriate). ansformer Infrared Spectron	ı length; for low range, neter
Materials and Reagents	 TCE Anhydrous Sodium St HCl- 35% GR grade 	llphate dried at 200 to 250°C	
Preparation of Reagents	 Preparation of S volume of 37.5 p percent benzene prevent loss of e Preparation of 100mL volumetr to it and obtain it with solvent and the calibration st 	Stock solution – Prepare a re ercent isooctane, 37.5 percer . Store in a stoppered 100mL vaporation. Calibration Solutions - Take ic flask, stopper it and weigh ts exact weight by difference. calculate the exact concentra candards in the range of 0-50	eference mixture by nt hexadecane and 25 a volumetric flask to e 20mL of TCE in it. Add 1mL standard Make up the volume ation in mg/L. Prepare mg/L.
Sample Preparation			
Method of analysis	 Acidify sample using 1 Transfer 1L sample to Add 20mL TCE and sh undisturbed till layers set min or centrifuge. Collect lower organic 1 sodium sulphate and rep combine the layers. Prepare the method by extraction 	HCl to pH ~ 2. 2L separating funnel. ake vigorously for about 2 m eparate. If emulsion will form ayer in glass vials after passi beat the extraction step four t lank with reagent grade wate	in. and leave the funnel a, shake gently for 5 to ng through anhydrous times. Collect and er adopting same

	process (without reference oil).
	6. Scan the standards and samples from 3200 to 2700cm-1. Measure
	absorbance of standards at peak height at 2930 ±5 cm-1 on solvent TCE
	background. Similarly, measure the absorbance of samples at same peak
	height on blank background.
	7. Prepare a calibration curve of absorbance against the concentration of
	standards. If the absorbance exceeds more than that of highest standard
	sample, dilute the sample as required.
	NOTE: Spiked Sample must be added with batch of 10 samples for quality
	check.
Calculation with units of	Mineral oil = Mass of oil in the extract as determined from calibration curve
expression	(mg) x 1000
Inference	NA
(Qualitative Analysis)	
Reference	Clause (6) of IS 3025 (part 39), Amendment No. 2
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफ एस एस एआई <u>जिंद्र देव</u> भारतीय साथ वर्ष्ट्र श्वेर मान्छ आधिकल्पा मल्या विकाय वर्ष्ट्र श्वेर मान्छ आधिकल्पा मल्या विकाय कर्षा साथ्या मां मांग्रस धारावार और परिवार साम्यामा मंत्रालय धारावार प्रकार कर्ष	Determinat	ion of Anions By Ion Chrom	atography
Method No.	FSSAI 14.043:2024	Revision No. & Date	0.0
Scope	Determination of Anion Drinking Water	s (F- , Cl- , NO2 - ,Br- , NO3	8 - , PO4 - , SO4) in
Caution	Sample with higher con	centration may interfere wh	ich may lead to tailing
Principle	A water sample is inject series of ion exchangers, their relative affinities f (guard & analytical colu- suppressor device that conductivity and enhance anions are converted f conductivity of the efflu- their acid forms are me basis of retention time measurement of peak are	ted into a stream of effluent The anions of interest are se for a low capacity, strongly mns). The separated anions t provides continuous su te analyte response. In the su to their highly conductive tent is greatly decreased. The asured by conductivity. The e as compared to standard ea or peak height.	and passed through a eparated on the basis of basic anion exchanger are directed through a ppression of effluent ppressor the separated acid forms while the ne separated anions in y are identified on the ds. Quantitation is by
Apparatus/Instruments	 Ion Chromatograph, column, analytical compensated small electronic peak integ Use an ion chromato minute at a pressure Analytical Column: A capable of resolvin Phosphate and Sulph Guard Column: Ide column from fouling Suppressor device: column and detecto and enhance conduct with different opera that provides the r 	including an injection valve column, suppressor devi- volume conductivity cell grator or chromatography d ography capable of deliverin of 5600 to 28000 KPa (800 I Any commercially available a ng Fluoride, Bromide, Chlo hate is acceptable. ntical to separator column by particulates or organics. Place this ion- exchange I r to reduce background con ctivity of the target analytes ational principles are availa equired sensitivity and bas	a sample loop, Guard ce, a temperature – and detector and an ata acquisition system. g 2 to 5 mL eluent per Psi). union-exchange column oride, Nitrate, Nitrite, to protect analytical based device between ductivity of the eluent s. Several such devices ble commercially; any eline stability may be
Materials and Reagents	used. 1. Reagent water A 2. Sulphuric Acid 3. Eluent Solution 4. Regeneration sol 5. Standard Anion sol	STM type 1 water ution solutions	

Preparation of Reagents	1. Reagent water ASTM type 1 water
	2. Sulphuric Acid
	3. Eluent Solution: Appropriate to column used to resolve target
	anions. Prepare 1.7 mM sodium bicarbonate and 1.8 mM sodium
	carbonate as eluent. Dissolve 0.5712 gm sodium bicarbonate 0.7632
	gm sodium carbonate in water and make up 4 L. Degas eluent before
	use either by vacuum filtration to simultaneously remove particle
	areater than 0.45 migron or by purging with bolium for 10 ming
	greater than 0.45 micron of by purging with neman for 10 mins.
	4. Regeneration solution: Required with some types of suppressors.
	See manufacturer's recommendations.
	Standard Anion solutions:- Stock standards solutions traceable to
	NIST are available from a number of commercial suppliers (Merck /
	sigma) or alternatively prepare from salt.
Sample Preparation	
Method of analysis	System Equilibration:
5	Turn on ion chromatograph and adjust eluent flow rate to manufacturer's
	run on on enomatograph and adjust crucht now rate to manufacturer s
	recommendations for the column/ eluent combination being used. Adjust
	detector to desired setting (10 μ s to 30 μ s) and let system come to
	equilibrium (15-20 min). A stable base line indicates equilibrium
	conditions Adjust detector offset to zero out eluent conductivity. If
	conditions. Adjust detector onset to zero out endent conductivity. If
	regenerant is used with the suppressor, adjust now rate to manufacturer's
	specifications.
	Calibration:
	Inject standards containing a single anion or a mixture and determine
	approximate retention times Observed times vary with conditions
	$D_{\text{optimizer}} = \frac{1}{2} \frac$
	Retention time always is in order F-, CI-, NOZ - , BF- , NO3 - , HPO4 - and SO4
	Inject at least three different concentrations for each anion to be
	measured. Construct a calibration by plotting peak height or area versus
	concentration using appropriate software. Verify calibration curve with a
	wid wares shall standard from a source independent of that of the
	mid range check standard from a source independent of that of the
	calibration standards. Check validity of existing calibration curves daily
	with a mid range calibration standard. Result should be with in 10% of
	original curve at mid range. Pecalibrate whenever the detector setting
	oliginal cuive at linu lange. Recamplate whenever the detector setting,
	eluent or regenerant is changed. To minimize the effect of the water dip on
	F- analysis. Eliminate water dip by diluting sample with eluent or by adding
	concentrated eluent to the sample to give the same concentration as in
	concentrated endent to the sample to give the same concentration as in
	eluent. If sample adjustments are made, adjust standards and blanks
	identically.
	If linearity is established ($r \ge 0.99$) over the calibration range the average
	response factor is acceptable. Record neak height or area for calculations of
	response factor is acceptable. Record peak height or area for calculations of the response factor RE HPO2.4 , is nonlinear below 1 mg/I
	the response factor, RF. HPO2 4 - is nonlinear below 1 mg/L.
	the response factor, RF. HPO2 4 - is nonlinear below 1 mg/L.
	the response factor is acceptable. Record peak height or area for calculations of the response factor, RF. HPO2 4 - is nonlinear below 1 mg/L. Sample analysis: If sample is collected with an auto sampler that does not

	prewashed 0.45 μ m pore membrane. With either manual or automated
	injection, flush loop with several volumes of sample. Take care to prevent
	carryover of analytes from samples of high concentration. After last peak
	has appeared and detector signal has returned to base line, another sample
	can be injected.
	Special Precautions:
	Do not inject any high concentration analyte samples or standards into the
	column. This may overload the column thereby leading to fronting or tailing
	of peaks. Only diluted samples and flow concentration standards are
	preferred.
	Even if high concentration sample were injected, they have to be completely
	flushed out of the column before next analysis.
	Indified but of the column before next analysis.
	After the final analysis the column has to be flushed for 15-20 minutes with
	mobile phase to remove any ion present in the column. The column should
	not be stored with any ion.
Calculation with units of	Determine concentration of each anion, in milligrams per liter, by referring
expression	to the appropriate calibration curve. Alternatively, when the response is
	shown to be linear, use the following equation:
	$C = U \times D = W h \exp C = \max \operatorname{cmion} / I$
	C = H X RF X D, where $C = mg amon/L$
	H = Peak height or area
	RF = response factor = concentration of standard/ height (or area) of
	standard
	D = dilution factor
Inference	NA
(Qualitative Analysis)	
Reference	APHA 4110
•	
Approved by	Scientific Panel on Methods of Sampling and Analysis

The second secon	Det	ermination of Metals By A	AS
Method No.	FSSAI 14.044:2024	Revision No. & Date	0.0
Scope	Requirements for deter (AAS) vary according to Metals by Flame Ator determination of- • antimony, bismucopper, gold, iri nickel, palladium sodium, strontiu air-acetylene flam • low concentration lead, manganese 3000 ammonium into methyl isol acetylene flame • aluminum, bari rhenium, silicon aspiration into a • low concentration hydroxyquinolin nitrous oxide-aco	mining metals by atomic ab metal and concentration. mic Absorption Spectrome ath, cadmium, calcium, cesi dium, iron, lead, lithium, m n, platinum, potassium, rhod m, thallium, tin, and zinc by c ne ons of cadmium, chromium , nickel, silver, and zinc by ch n pyrrolidjne dithiocarbam boutyl ketone (MIBK), and a um, beryllium, calcium, m n, thorium, titanium, and nitrous oxide-acetylene flam ons of aluminum and berylliu e, extraction into MIBK, a	psorption spectrometry etry encompasses the um, chromium, cobalt, agnesium, manganese, ium, ruthenium, silver, lirect aspiration into an a, cobalt, copper, iron, nelation with 200 • Part ate (APDC), extraction aspiration into an air- nolybdenum, osmium, vanadium by direct e um by chelation with 8- and aspiration into a
Caution	Acetylene gas represen instrument manufacture allow gas contact with mercury. Do not use cop % copper content.	ts an explosive hazard in r's directions in plumbing an copper, brass with >65% c per or brass tubing, regulato	the laboratory. Follow ad using this gas. Do not opper, silver, or liquid ors, or fittings with > 65
Principle	In flame atomic absorption and the metals are atomic into a monochromator, light absorbed by the atomic absorption exhibits super metal has its own chan composed of that element from spectral or radian characteristic waveleng concentration of the element range. Most atomic absorption in an emission mode, where	on spectrometry, a sample is nized. A light beam is direc and onto a detector that m omized metal in the flame. F erior sensitivity over flame e racteristic absorption wave ent is used. This makes the tion interferences. The amo th absorbed in the flame ement in the sample over a rption instruments also are hich may provide better linea	s aspirated into a flame ted through the flame, easures the amount of or some metals, atomic emission. Because each length, a source lamp method relatively free ount of energy at the is proportional to the limited concentration equipped for operation rity for some elements.
Apparatus/Instruments	Atomic absorption sp absorption spectrometer spectrum of an element lamp), a device for var	ectrometer and associate er, consisting of a light sout t (hollow-cathode lamp or e porizing the sample (usually	d equipment: Atomic urce emitting the line electrodeless discharge y a flame), a means of

isolating an absorption line (monochromator or filter and adjustable slit), and a photoelectric detector with its associated electronic amplifying and measuring equipment.

Burner: The most common type of burner is a premix, which introduces the spray into a condensing chamber for removal of large droplets. The burner may be fitted with a conventional head containing a single slot; a 3-slot Boling head, which may be preferred for direct aspiration with an air-acetylene flame; or a special head for use with nitrous oxide and acetylene. Recovery of the added metal should be between 85% and 115%.

SI. No.	METHOD	METALS	BURNER
1.	Direct Air- Acetylene	Calcium, Chromium, Copper Lead	Use burner head recommended by the
	Flame	,Magnesium ,	manufacturer.
	Method	Manganese ,Nickel , Silver , Sodium ,Zinc	
2.	Extraction	Chromium, Copper	Burner head, conventiona
	and Air-	,Lead, Iron, Manganese	Consult manufacturer's
	Acetylene	, Nickel ,Silver , Zinc	operating manual far
	Flame		suggested burner .
	Method		
3.	Direct	Calcium	Nitrous oxide burner head
	Nitrous		Use special burner head as
	Oxide-		suggested in
	Acetylene		manufacturer's manual. A
	Flame		roughly 20-min intervals
	Method		of operation it may be
			necessary to dislodge the
			carbon crust that forms
			along the slit surface with
			a carbon rod or
			appropriate alternative.
			T-junction valve or other
			switching valve for rapidly
			changing from nitrous
			oxide to air, so that flame
			can be turned on or off
			with air as oxidant to
			prevent flashbacks.

	hottlad gas
	bottled gas.
	b. Acetylene : Standard commercial grade. Acetone, which always is present in acetylene cylinders, can be prevented from entering and damaging the burner head by replacing a cylinder when its pressure has fallen to 689 kPa (100 psi) acetylene.
	c. Metal-free water
	d. Certified Reference Material For Standard metal solutions : As per 17034:2017
Preparation of Reagents	1. Calcium solution: Dissolve 630 mg calcium carbonate (CaCO3) in 50 mL of
	1 + 5 HCl. If necessary, boil gently to obtain complete solution. Cool and
	dilute to 1000 mL with water.
	2. Hydrochloric acid (HCl), 1 %, 10%, 20% (all v/v), $1 + 5$, $1 + 1$, and concentrated.
	3.Nitric acid (HNO3), 2% (v/v), 1 + 1, and conc.
	4. Aqua Regia : Add 3 volumes concentrated HCl to 1 volume concentrated
	HNO ³
	5. Sodium sulfate (Na2SO4)
	6. lanthanum solution: Lanthanum solution: Dissolve 58.65 g lanthanum
	oxide (Lazu 3) in 250 mL concentrated HCI. Add acid slowly until the
	Material is dissolved and dilute to 1000 mL with water.
	7. Water-Saturated MIDK: MIX 1 part purmed MIDK with 1 part water in a senaratory funnel. Shake 30 s and let senarate. Discard aqueous layer. Saye
	MIRK laver
	8. Sodium sulfate (Na2SO4), anhydrous.
	9. Standard metal solutions: Prepare a series of standard metal solutions in
	the optimum concentration range by appropriate dilution of the fallowing
	stock metal solutions with water containing 1.5 mL concentrated HNO3 per
	liter.
Sample Preparation	Direct Air-Acetylene Flame Method:
	Required sample preparation depends on the metal form being measured.
	For all samples, make certain that the concentrations of acid and matrix modifiers are the same in both samples and standards. When determining
	solution before aspirating When determining Fe or Mn mix 100 mL with
	25 mL of Ca solution before aspirating. When determining Cr. mix 1 mL 30%
	H_2O_2 with each 100 mL before aspirating. Alternatively use proportionally
	smaller volumes.
	Extraction and Air-Acetylene Flame Method:
	Prepare samples in the same manner as the standards. Rinse atomizer by
	aspirating water-saturated MIBK. Aspirate organic extracts treated as above
	directly into the flame and record absorbance.

	Direct Nitrous Oxide-Acetylene Flame Method:
	Required sample preparation depends on the metal form being measured.
	For all samples, make certain that the concentrations of acid and matrix
	modifiers are the same in both samples and standards. When determining
	Ca or Mg, dilute and mix 100 mL sample or standard with 10 mL lanthanum
	solution before aspirating. When determining Fe or Mn, mix 100 mL with
	25 mL of Ca solution before aspirating When determining Cr mix 1 mL 30%
	$H_2\Omega_2$ with each 100 mL before aspirating Alternatively use proportionally
	smaller volumes. When determining Al Ba or Ti mix 2 mL KCl solution into
	100 mL sample and standards before aspiration. When determining Mo and
	$V = 100 \text{ mL sample and standards before a spiration. When determining Mo and V = 100 \text{ mL sample and standards before}$
	v, mix 2 mil Al(NOS)) • 9H20 mil 100 mil sample and standards before
	aspiration.
Method of analysis	Direct Air-Acetylene Flame Method : Rinse nebulizer by aspirating water
	containing 1.5 mL of concentrated HNO ₃ per liter. Aspirate blank and zero
	instrument. Aspirate sample and determine its absorbance.
	Extraction and Air-Acetylene Flame Method : After final adjusting of
	burner position, aspirate water-saturated MIBK into flame and gradually
	reduce fuel flow until flame is similar to that before aspiration of solvent.
	Prepare samples in the same manner as the standards. Rinse atomizer by
	aspirating water-saturated MIBK. Aspirate organic extracts treated as above
	directly into the flame and record absorbances.
	During extraction, if an emulsion forms at the water-MIBK interface, add
	anhydrous Na ₂ SO ₄ to obtain a homogeneous organic phase. In that case, also
	add N _{a2} SO ₄ to all standards and blanks. To avoid problems associated with
	instability of extracted metal complexes, determine metals immediately
	after extraction.
	Direct Nitrous Oxide-Acetylene Flame Method:
	Rinse atomizer by aspirating water containing 1.5 mL concentrated HNO ₃
	per liter and zero instrument. Aspirate a sample and determine its
	absorbance.
Calculation with units of	Determine concentration of each metal ion, in micrograms per liter for trace
expression	elements, and in milligrams per liter for more common metals, by using the
	appropriate calibration curve prepared.
	Alternatively, read concentration directly from the instrument readout if the
	instrument is so equipped. If the sample has been diluted, multiply by the
	appropriate dilution factor.
Inference	NA
(Qualitative Analysis)	
Reference	APHA 24 TH Edition 2023
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआई	Determination of A	luminum, Antimony, Arsen	ic, Barium, Beryllium,
<u> 1552वा</u> भारतीय साथ भरका और मानक प्राधिकरण	Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Manganese, Molybdenum,		
Food Gately and Glavelands Authority of India ব্যাক্ষয় और ঘৰিয়াৰ কলোগ্য সঁবালেয় Ministry of Health and Parnity Welfare	Wiekel, Scientum,	Absorption Spectroscopy	y
Method No.	FSSAI 14.045:2024	Revision No. & Date	0.0
Scope	This procedure is used	for the determination of mic	ro quantities of metals like
	aiuminum, antimony ,ai	rsenic , barium, beryilium , ca	admium, chromium, cobait,
	water samples up to par	anese, morybuenum, mcker, ts ner hillion (nnh) level	selemum, suver and thi m
Caution	Do not mix hydrogen a	nd other gases in the labora	tory: hydrogen gas is very
	flammable-handle with	caution.	
	Use protective mask an	nd/or dust collector. Prepare	e samples in area separate
	from analytical laborato	ry.	
	Inhalation of solvent v	apors can cause headaches,	drowsiness, dizziness, and
	nausea. Disorientation, a	anesthetic effects, and loss of	consciousness can occur at
	high concentrations. W	'ear laboratory coat, gloves,	safety goggles and mask.
	Perform work in a fume	hood when using solvents.	
Principle	Flectro-thermal atomic	absorption spectroscopy is h	ased on the same principle
Timeipie	as direct flame atomiz	ation, but, an electrically he	ased on the same principle
	furnace replaces the star	ndard burner head.	area areanized of graphice
	A discrete sample volun	ne is dispensed into the grap	hite sample tube. Typically,
	determinations are mad	e by heating the sample in th	nree or more stages. First, a
	low current heats the	tube to dry the sample. The	e second or charring stage
	destroys organic matt	ter and volatizes other n	natrix components at an
	intermediate temperatu	re. Finally, the current heats	the tube to incandescence
	and in an inert atmosph	lere, atomizes the element be	eing determined. Additional
	the tube between same	lueu to aiu ili uryilig aliu cila. Iles The resultant ground-st	ate atomic vanour absorbs
	monochromatic radiatio	on from the source. A photo	electric detector measures
	the intensity of transm	itted radiation. The inverse	of transmittance is related
	logarithmically to the al	osorbance, which is directly p	proportional to the number
	density of vaporized gro	und state atom over a limited	l concentration range.
Apparatus/Instruments	Electro-thermal atomic a	absorption spectroscopy or A	tomic Absorption
	Spectrometer with Grap	hite furnace.	
Motorials and Descents	1 Decout water (ACTM	trma 1)	
Materials and Reagents	1. Reagent water (ASTM	type-1)	
	3. Standard of metals -	stock standard solutions trac	eable to NIST are available
	from a number of cor	nmercial suppliers (Merck	& Sigma) or alternatively
	prepare from reagent as	mentioned in APHA 3111B	
	4. Air- Air is cleaned &	dried through a suitable filte	er to remove oil, water and
	other foreign substance	es. The source may be a co	mpressor or commercially
	bottled gas.		

	5. Argon Gas- Minimum purity 99.99%		
	6. Matrix modifier		
	6.1 Magnesium nitrate- (10000 mg/L)		
	6.2 Palladium nitrate- (4000 mg/L)		
	6.3 Phosphoric acid- (10% v/v)		
	6.4 Nickel nitrate – (10000 mg/L)		
	6.5 Citric acid – (4%)		
Preparation of Reagents	1.Matrix modifier		
	Magnesium nitrate- (10000 mg/L): Dissolve 10.5 gm Mg (NO ₃) ₂ . 6H ₂ O in water.		
	Dilute to100 mL.		
	Palladium nitrate- (4000 mg/L): Dissolve 8.89 gm Pd (NO ₃) ₂ .H ₂ O in water. Dilute		
	to 1000 mL		
	Phosphoric acid- (10% v/v): Add 10 mL conc. H_3PO_4 to water. Dilute to 100 mL.		
	Nickel nitrate – (10000 mg/L): Dissolve 4.96 gm Ni (NO ₃) ₂ . 6H ₂ O in water. Dilute		
	to 100 mL		
	Citric acid – (4%): Dissolve 40 gm citric acid in water. Dilute to 1L		
Sample Preparation	Colorless & transparent water samples with turbidity of <1.0 can be directly		
	analyzed by Electro-thermal atomic absorption spectroscopy for total metals		
	after acidifying with conc. HNO_3 (1.5 mL HNO_3 /L of water).		
	Sample digestion is not required.		
Method of analysis	• Standard Preparation: Prepare a series of standard metal solution in		
	the optimum concentration range by appropriate dilution from their		
	stock solution with ASTM type 1 water containing 1.5 mL conc. HNO ₃ /L,		
	using the following formula.		
	N1V1= N2V2		
	• Sample Analysis: Propers standard solutions of at least three different		
	• Sample Analysis: Prepare standard solutions of at least timee different		
	curve. Then measure the absorbance of the test solution adjusted in		
	concentration to a measurable range and determines the concentration		
	of the element from the calibration curve. Refere cample analysis rinse		
	nobulizer by achieving ASTM type 1 containing 1 5 mL cone, HNO, /I		
	nebulzer by aspirating ASTM type-1 containing 1.5 hit conc. mo3/1		
	• Determination by instrument: Inject a measured portion of pretreated		
	sample into the graphite furnace. Use same volume as was used to		
	prepare the calibration curve. Add modifier immediately after adding the		
	sample, preferably using an automatic sampler or a micropipette. Use		
	the same volume and concentration of modifier for all standards and		
	samples as given in the table. Dry. char. and atomize according to the		
	preset program in the method. Repeat until reproducible results are		
	obtained. Compare the average absorbance value or peak area to the		
	calibration curve to determine concentration of the element of interest.		
	obtained. Compare the average absorbance value or peak area to the calibration curve to determine concentration of the element of interest.		
	<u>Atomization</u>	<u>i Atomic Absorpti</u>	<u>on Spectrometry</u>
-----------------	--------------------	--------------------------	--------------------------
Element	Wavelength (nm)	Estimated Detection	Optimum Concentration
		Level (1g/L)	Range (pg/L)
Al	309.3	3	20-200
Sb	217.6	0.8	20-300
As	193.7	0.5	5-100
Ва	553.6	2	10-200
Be	234.9	0.02	1-30
Cd	228.8	0.05	0.5-10
Cr	357.9	0.1	5-100
Со	240.7	0.7	5-100
Cu	324.7	0.7	5-100
Fe	248.3	1	5-100
Pb ^a	283.3	0.7	5-100
Mn	279.5	0.2	1-30
Мо	313.3	1	3-60
Ni	232.0	0.6	5-100
Se	196.0	0.6	5-100
Ag	328.1	0.2	1-25
Sn	224.6	1.7	20-300

Alternatively, read results directly if the instrument is equipped with this capability. If absorbance (or concentration) or peak area of the sample is greater than absorbance (concentration) or peak area of the most concentrated standard solution, dilute sample and reanalyze.

Гable – Potential Matrix Modifiers for G	Graphite furnace AAS
--	----------------------

Modifier	Analyses for which modifier May	
	be Useful	
1500 mg Pd/L + 100mg Mg(NO ₃) ₂	Ag, As, Cu, Mn, Hg, Sb, Se, Tl	
00-2000 mg Pd/L + Reducing agent	As, Cd, Cr, Cu, Fe, Mn, Hg, Ni, Pb, Sb	
(Citric acid 1-2% preferred)		
5000 mg Mg(NO ₃) ₂ /L	Co, Cr, Fe, Mn,	
100-500 mg Pd/L	As ,	
50 mg Ni/L	As , Se , Sb	
2% PO ₄ + 1000mgMg(NO ₃) ₂	Cd , Pb	
Use 10µL modifi	er/ 10 μL sample	

Calculation with units of expression Inference (Qualitative Analysis)	 A continuing calibration verification (CCV) standard should be analyzed after every 10 injections and at the end of the run. The CCV standard should be a mid-range calibration standard. An instrument blank should be analyzed after each CCV (called a continuing calibration blank, or CCB) to demonstrate that there is no carryover and that the analytical system is free from contamination. Method of Standard Additions (MSA) calibration curves may be used any time matrix interferences are suspected. Post-preparation spikes (PS) should be prepared and analyzed whenever there is an issue with the MS recoveries. Export and process instrument data. Electro thermal atomization determinations may be subjected to significant interferences from molecular absorption as well as chemical and matrix effect. Molecular absorption may occur when components of sample matrix volatize during atomization, resulting in broadband absorption. When such phenomena occurs use background correction to compensate for this interference. Matrix modification can be useful in minimizing interference and increasing analytical sensitivity. Chemical modifier generally modifies relative volatilities of matrix and metal. Some modifiers inhibit metal volatization, allowing use of higher ashing/charring temperatures and
	volatization, allowing use of higher ashing/charring temperatures and increasing efficiency of matrix removal.
Reference	APHA 24 th Edition 2023
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआई	Determination of Mercury by Cold-Vapor Atomic Absorption		
Issai	Spectrometric Method		
भारतीय बाख बृहक्षाओर मानक प्राधिकरण Food Balley and Sex-dards Authority of India स्वास्थ्य और परिचार कल्याण मंत्रालय			
Ministry of Health and Family Welfare	FSSAL 14 046,2024	Powision No. & Data	0.0
Methou No.	135AI 14.040.2024	Revision No. & Date	0.0
Scope	This procedure is used	for the determination of	mercury in Packaged
F -	Drinking water, drinkin	g water and waste water. Lo	ower detection limit of
	0.2 ppb can be achieved	using this technique.	
Caution	When possible, dedícat	e glassware for use in Hg	analysis. Avoid using
	glassware previously ex	posed to high levels of Hg,	such as those used in
	COD, TKN, or ci- analysis		
Principle	The flameless atomic ab	sorption procedure is a phy	rsical method based on
	the absorption of radiati	ion at 253.7 nm by mercury	vapour. The mercury is
	The mercury veneur ne	al state and aerated from sol	ad in the light noth of
	Mercury lamp of an at	tomic absorption spectroph	eu III uie light path of
	(neak height) is measu	red as a function of merci	ury concentration and
	recorded.		ary concentration and
Apparatus/Instruments	Atomic absorpt	tion spectrometer and a	ssociated equipment.
	Instruments and	l accessories specifically de	esigned for measuring
	mercury via the	cold vapor technique are a	available commercially
	and may be subs	tituted.	
	Absorption cell,	a glass or plastic tube app	proximately 2.5 cm in
	diameter. An 11	.4-cm-long tube has been fo	und satisfactory, but a
	15-cm-long tube	is preferred. Grind tube end	ls perpendicular to the
	longitudinal axis	, and cement quartz window	ws in place. Attach gas
	inlet and outlet p	oorts (6.4 mm diam) 1.3 cm fi	rom each end.
	Cell support: Str other quitable qu	ap the cell to the flat hitrous	s-oxide burner head or
	transmittance	ipport and angn in the light i	beam to give maximum
	Air numns: Use	any peristaltic nump with e	lectronic speed control
	capable of delive	ering an air flow of 2 L/mi	n. Any other regulated
	compressed air s	ystem or air cylinder also is :	satisfactory.
	Flowmeter, capa	ble of measuring an air flow of	of 2 L/min.
	Aeration tubing,	a straight glass frit having a	coarse porosity for use
	in reaction flask.		
	Reaction flask, 2	50-mL Erlenmeyer flask or a	BOD bottle, fitted with
	a rubber stopper	to hold aeration tube.	
	Drying tube, 150	-mm x 18-mm-diam, contair	ning 20 g Mg (CIO4)i. A
	60-W light bulb	with a suitable shade may be	substituted to prevent
	the condensation	of moisture inside the abso	rption cell. Position the
	bulb to maintain	the cell at 10 °C above ambie	ent temperature.
	Connecting tubi	ng, glass tubing to pass me	ercury vapor from the

	reaction flask to absorption cell and to interconnect all other
	components. Clear vinyl plastic tubing (Tygon, or equivalent) may
	be substituted for glass.
Materials and Reagents	1. Metal-free water
	2. Stock mercury solutio1J,: Dissolve 0.1354 g mercurié chloride
	(HgC12) in about 70 mL water, add 1 mL conc HNO3, and dilute to
	100 mL with water; $1.00 mL = 1.00 mg$ Hg.
	3. Standard mercury solutions: Prepare a series of standard mercury
	solutions containing O to 5 μ g/L by the appropriate dilu tion of
	stock mercury solution with water containing 10 mL/L conc HNO3.
	Prepare standards daily
	4. Nitric acid (HNO3), conc
	5. Potassium permanganate solution: Dissolve 50 g KMnO4 in water
	and dilute to 1 L.
	6. Potassium persulfate solution: Dissolve 50 g K2S208 in water and
	dilute to 1 L.
	7. Sodium chloride-hydroxylamine sulfate solution: Dissolve 120 g
	NaCl and 120 g (NH2OH)i · H2SO4 in water and dilute to 1 L. A 10%
	hydroxylamine hydrochloride solution may be substituted for the
	hydroxylamine sulphate.
	8. Stannous ion (Sn2 +) solution: Use either stannous chloride,
	paragraph hl below, or stannous sulfate, paragraph h2 below, to
	prepare this solution containing about 7.0 g Sn2 + per 100 mL.
	1) Dissolve 10 g ShC12 in water containing 20 mL conc HCI and dilute to 100 mL
	allule to 100 IIIL.
	dilute to 100 mL. Both solutions decompose over time
	If a suspension forms, stir the reagent continuously during use
	Reagent volume is sufficient to process about 20 samples: adjust
	volumes prepared to accome modate number of samples processed
	9 Sulfuric acid (H2SO4) conc
Preparation of Reagents	As mentioned above.
Sample Preparation	Transfer 100mL of sample or portion diluted to 100 mL containing not than
	5.0 $\mu g/L$ and a blank of 100 mL water to a 300mL BOD bottles. Add 5 mL
	Sulphuric acid (98%) and 2.5 mL of Nitric acid (70%) to each bottle . Add 15
	mL Potassium permanganate solution to each bottle and let it stand for at
	least 15 minutes. Add 8 mL Potassium persulphate solution to each bottle
	and heat for 2 h in a water bath at 95°C. Cool and add 6 mL of Sodium
	chloride-hydroxylamine sulphate to reduce the excess permanganate.
Method of analysis	Standard Preparation:
	Prepare a series of standard metal solution in the optimum concentration
	range $(1\mu g/L)$ to $5\mu g/L$ by appropriate dilution from their stock solution
	with ASTM type 1 water using the following formula.

	Standardization:
	Transfer 100 mL each of the 1.0, 2.0, and 5.0 μ g/L Hg standard solutions
	anda blank of 100 mL water to 250-mL Erlenmeyer reaction flasks. Add 5
	mL conc H2SO4 and 2.5 mL conc HNO3 to each flask. Add 15 mL KMnO4
	solution to each flask and let stand at least 15 min. Add 8 mL K2S2O8
	solution to each flask and heat for 2 h in a water bath at 90 to 95 $^{\mathrm{o}}$ C. Cool to
	ambient temperature. Treating each flask individually, add enough NaCl-
	hydroxyl amine solution to reduce excess KMnO4, then add 5 mL SnC12 or
	SnSO4 solution and immediately attach flask to aeration apparatus. As Hg is
	volatilized and carried into the absorption cell, absorbance will increase to a
	maximum within a few seconds. As soon as the recorder returns
	approximately to the baseline, remove the stopper holding the frit from the
	reaction flask, and replace with a flask containing water. Flush the system
	for a few seconds, and run the next standard in the same manner. Construct
	a standard curve by plotting peak height versus micrograms of Hg.
	Analysis of samples:
	Transfer 100 mL sample or portion diluted to 100 mL containing not more
	than 5.0 μ g Hg/L to a reaction flask.
Calculation with units of	Determine peak height of sample from recorder chart and read mercury
expression	value from standard curve prepared.
Inference	NA
(Qualitative Analysis)	
Reference	APHA 24 TH Edition 2023
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआई	Determination of Meta	ls in Water By Inductively	Coupled Plasma-Mass
Issai		Spectrometry	
খাংলীয়ে ব্যাহা বুৰু কুন্ধ কটা মানক আবিজবন্য Fised Gabry and Gassbards Authonty of India ৰ্বাহাৰ্থয় কীৰ্ব ঘৰিয়েরে ফেল্যোগে সঁবালেনে Ministry of Health and Family Weitbre			
Method No.	FSSAI 14.047:2024	Revision No. & Date	0.0
Scope	This method is design	ed to determine trace met	als and metalloids in
	surface, ground, and dri	inking waters via inductively	v coupled plasma-mass
	spectrometry (ICP-MS).	The Inductively Coupled F	lasma coupled with a
	mass spectrometer give	very high sensitivity for the	determination of multi
	barium cadmium chror	nium conner iron lead ma	nganese molybdenum
	nickel selenium and silv	er in water can be determine	ingaliese, morybuenum,
Caution	1. Concentrated nitric:	and hydrochloric acids prese	nt various hazards and
Caution	are moderately tox	ic and extremely irritating	to skin and mucus
	membranes. Use these	se reagents in a fume hood w	henever possible and if
	eye or skin contact	occurs, flush with large volu	umes of water. Always
	wear safety glasses o	r a shield for eye protection,	protective clothing and
	observe proper mixir	ng when working with these i	reagents.
	2. The acidification of s	amples containing reactive i	materials may result in
	the release of toxic g	gases, such as cyanides or s	ulfides. Acidification of
	samples should be do	one in a fume hood.	
	3. Analytical plasma so	urces emit radiofrequency r	adiation in addition to
	intense UV radiation	a. Suitable precautions shou	Id be taken to protect
	personnel from such	h hazards. The inductively of	coupled plasma should
Drinciplo	In this method, sample	proper eye protection from u	an argan based high
rincipie	temperature radio-frequ	iency plasma usually via p	neumatic nebulization
	As energy transfers fro	om the plasma to the same	ple stream, the target
	element dissolves, atom	lizes, and ionizes. The result	ting ions are extracted
	from the plasma throu	gh a differential vacuum in	iterface and separated
	based on their mass-t	co-charge (m/z) ratio by	a mass spectrometer.
	Typically, either a quad	rupole (with or without CC	Γ or DRC) or magnetic
	sector (high-resolution)	mass spectrometer is used.	An electron multiplier
	detector counts the	separated ions, and a	computer-based data-
	management system pro	cesses the resulting information	tion.
Annaratus /Instruments	Inductively Coupled Plac	ma-Mass Spectrometry	
Apparatus/ instruments	Inductively coupled rias	sina-mass spectrometry	
Materials and Reagents	Reagents may contain el	emental impurities that migh	nt affect the integrity of
	analytical data. Owing to	the high sensitivity of ICP-M	IS, high-purity reagents
	should be used wheneve	er possible. All acids used for	this method must be of
	ultra high-purity grade	. Suitable acids are availab	ble from a number of
	manufacturers or may b	e prepared by sub-boiling d	istillation. Nitric acid is
	preterred for ICP-MS in	n order to minimize polyato	omic ion interferences.
	Several polyatomic ion i	nterterences result when hy	drochloric acid is used,
	however, it should be n	oted that hydrochloric acid i	is required to maintain

	stability in solutions containing antimony and silver. When hydrochloric
	acid is used, corrections for the chloride polyatomic ion interferences must
	be applied to all data .
	• Nitric acid (specific gravity 1.41)
	• Hydrochloric acid (specific gravity 1.19).
	• Ammonium hydroxide (specific gravity 0.902)
	 Reagent water - All references to reagent grade water in this method
	refer to ASTM Type I water
	• Standard Stock Solutions Stock standards and tuning solution
	• Standard Stock Solutions - Stock standards and tuning solution
	from a ultra high purity grade chamicals or metals (00.00, 00.000)
	I official a utilization purity grade chemicals of metals (99.99 - 99.999%)
	pure). All saits should be dried for one hour at 105°C, unless
	otherwise specified. Stock solutions should be stored in FEP bottles.
Preparation of Reagents	Same as above.
Sample Preparation	Colorless & transparent, water samples with turbidity of <1.0 can be
	directly analyzed by ICP-MS for total metals after acidifying with HNO3 (1.5
	mL HNO3 /L of water). Sample digestion is not required.
Method of analysis	After preparation of sample
	• Standard Preparation: - Prepare a series of standard metal
	solution in the optimum concentration range $(1\mu g/L \text{ to } 5\mu g/L)$ by
	appropriate dilution from their stock solution with ASTM type 1
	water using the following formula N1V1 = N2V2
	• Analysis of sample: Follow manufacturer's standard operating
	procedure for initialization, mass calibration, gas flow optimization.
	and other instrument operating conditions. Maintain complete and
	detailed information on the operational status of the instrument
	whenever it is used A suggested analytical run sequence including
	instrument tuning (entimization shedring of reagent blanks
	instrument culling/optimization, checking of reagent blanks,
	instrument calibration and calibration verification, analysis of
	samples, and analysis of quality control samples and blanks. Follow
	manufacture's instruction for optimizing instrument performance.
	The most important optimization criteria include nebulizer gas
	flows, detector and lens voltages, radio-frequency forward power,
	and mass calibration. Periodically check mass calibration and
	instrument resolution. Ideally, optimize the instrument to minimize
	oxide formation and doubly-charged species formation. Measure the
	CeO/Ce ratio to monitor oxide formation, and measure doubly-
	charged species by determination of the Ba2+/Ba+ ratio. Both these
	ratios should meet the manufacture's criteria. After optimization
	and tuning, calibrate instrument using an appropriate range of
	calibration standards. Use appropriate regression techniques to
	determine calibration lines or curves for each analyte. For
	acceptable calibrations. Correlation coefficients for regression
	curves are ideally 0.995 or greater. Immediately after calibration
	curves are meany 0.775 or greater. miniculately after calibration,

run initial calibration verification standard; acceptance criteria are +10% of known analyte concentration. Next run initial calibration verification blank; acceptance criteria are ideally \pm the absolute value of the instrument detection limit for each analyte , but in practise \pm the absolute value of laboratory reporting limit or the laboratory method detection limit for each analyte is acceptable. Verify low-level calibration by running 0.3- and/or 1.0 µg/L standards if analyte concentration are less than 5 µg/L. Ensure that all vessels and reagents are free from contamination . During analytical run include quality control analyses. Internal standard recoveries must be between 70% and 125% of internal standard response in the laboratory-fortified blank: otherwise, dilute sample, add internal standard mix, and reanalyze. Make known-addition analyses for each case separate matrix in a digestion or filtration batch.

For every new or unusual matrix, it is highly recommended that a semi- quantitative analysis be carried out to screen the sample for elements at high concentration. Information gained from this may be used to prevent potential damage to the detector during sample analysis and to identify elements which may be higher than the linear range should be diluted into range and reanalyzed. Select abundant masses for the metals as given below in the table

Element of Interest	Masses
Aluminum	27
Antimony	123
Arsenic	75
Barium	137
Beryllium	9
Cadmium	111
Chromium	52
Cobalt	59
Copper	63
Lead	206, 207, and 208
Manganese	55
Mercury	202
Molybdenum	98
Nickel	60
Selenium	82
Silver	107
Thallium	205
Thorium	232

		Uranium	238	
		Vanadium	51	
		Zinc	66	
				1
Calculation with units of	Metal (conc. in sample (mg/L) = Sample	e conc. from instrument (mg/L)	
Interference	A DIIUL Severa	lon factor (il any) l'interference sources may caus	e inaccuracies in the determina	tion of
interierente	trace e	lements by ICP-MS. These are:		
	1.	Isobaric elemental interfere	nces:	
		Are caused by isotopes of dif	ferent elements which form sir	ngly or
		doubly charged ions of the sa	me nominal mass-to-charge rat	tio and
		which cannot be resolved by	y the mass spectrometer in u	se. All
		elements determined by this	s method have, at a minimur	n, one
		isotopes only molyhdenum	-98 (ruthenium) and selen	ium82
		(krypton) have isobaric ele	mental interferences. If alter	native
	analytical isotopes having higher natural abundance are selected in			cted in
	order to achieve greater sensitivity, an isobaric interference may			
	occur. All data obtained under such conditions must be corrected by			
	measuring the signal from another isotope of the interfering			
	element and subtracting the appropriate signal ratio from the			
	isotope of interest. A record of this correction process should be included with the report of the date. It should be noted that such			
	corrections will only be as accurate as the accuracy of the isotope		sotone	
		ratio used in the elemental eq	uation for data calculations. Re	elevant
		isotope ratios should be estab	lished prior to the application	of any
		corrections.		2
	2.	Abundance sensitivity:		1
		Is a property defining the deg	ree to which the wings of a mas	s peak
		by ion energy and quadrupo	le operating pressure Wing o	werlan
		interferences may result when	n a small ion peak is being me	asured
		adjacent to a large one. The po	otential for these interferences	should
		be recognized and the spectron	meter resolution adjusted to mi	nimize
		them.		
		Technology 1 and 1 and 1	- C	
	3.	Isobaric polyatomic ion inter	rierences:	h hava
		the same nominal mass-to-ch	g of more than one atom which	n nave
		and which cannot be resolve	ed by the mass spectrometer i	in use.
		These ions are commonly form	ned in the plasma or interface s	system
		from support gases or sampl	e components. Most of the co	mmon
		interferences have been ident	ified3, and these are listed in '	Table2

together with the method elements affected. Such interferences must be recognized, and when they cannot be avoided by the selection of alternative analytical isotopes, appropriate corrections must be made to the data. Equations for the correction of data should be established at the time of the analytical run sequence as the polyatomic ion interferences will be highly dependent on the sample matrix and chosen instrument conditions. In particular, the common 82Kr interference that affects the determination of both arsenic and selenium, can be greatly reduced with the use of high purity krypton free argon.

4. Physical interferences ;

Are associated with the physical processes which govern the transport of sample into the plasma, sample conversion processes in the plasma, and the transmission of ions through the plasma mass spectrometer interface. These interferences may result in differences between instrument responses for the sample and the calibration standards. Physical interferences may occur in the transfer of solution to the nebulizer (e.g., viscosity effects), at the point of aerosol formation and transport to the plasma (e.g., surface tension), or during excitation and ionization processes within the plasma itself. High levels of dissolved solids in the sample may contribute deposits of material on the extraction and/or skimmer cones reducing the effective diameter of the orifices and therefore ion transmission. Dissolved solids levels not exceeding 0.2% (w/v) have been recommended3 to reduce such effects. Internal standardization may be effectively used to compensate for many physical interference effects. Four Internal standards ideally should have similar analytical behavior to the elements being determined.

5. Memory interferences:

Result when isotopes of elements in a previous sample contribute to the signals measured in a new sample. Memory effects can result from sample deposition on the sampler and skimmer cones, and from the buildup of sample material in the plasma torch and spray chamber. The site where these effects occur is dependent on the element and can be minimized by flushing the system with a rinse blank between samples. The possibility of memory interferences should be recognized within an analytical run and suitable rinse times should be used to reduce them. The rinse times necessary for a particular element should be estimated prior to analysis. This may be achieved by aspirating a standard containing elements corresponding to 10 times the upper end of the linear range for a normal sample analysis period, followed by analysis of the rinse blank at designated intervals. The length of time required to reduce analyte signals to within a factor of 10 of the method detection limit, should be noted. Memory interferences may also be assessed within

	an analytical run by using a minimum of three replicate integrations for data acquisition. If the integrated signal values drop consecutively, the analyst should be alerted to the possibility of a memory effect, and should examine the analyte concentration in the previous sample to identify if this was high. If a memory interference is suspected, the sample should be reanalyzed after a long rinse period. In the determination of mercury, which suffers from severe memory effects, the addition of 100 μ g/L gold will effectively rinse 5 μ g/L mercury in approximately two minutes. Higher concentrations will require a longer rinse time.
Reference	APHA 24 TH Edition 2023
Approved by	Scientific Panel on Methods of Sampling and Analysis

एफएसएसएआई जिल्हा प्रसार के गलर प्रविकरण हब्द डियर के गलर प्रविकरण बवास्थ्य और परिवार कन्याण मंताल्य आगडांगू of Health and Family Weitsee	Determination of Gross Beta Activity Measurement			
Method No.	FSSAI 14.048:2024	Revision No. & Date	0.0	
Scope	This method is applicabl	e for measurement of gross-	beta activity in water	
	and waste water.			
Caution	Each chemical should be treated as a potential health hazard, and exposure to these chemicals should be minimized. A reference file of safety data sheets (SDSs) should be made available to all personnel involved in the preparation of samples and their analyses.			
Principle	 For measurement of beta activity of water, waste water, soil, gummed paper, air filters, ash of vegetation and biological samples, the samples taken are prepared with suitable treatment (digestion) and then measured for beta activity by a low background beta counter. For the purpose of this method the following terms shall apply. 1) Activity - The number of spontaneous nuclear transformations occurring in a given quantity of material during a suitably small interval of time divided by that interval of time. It is commonly expressed in Becquerel (Bq), formerly expressed in Curies. NOTE - Sometimes used to designate a quantity of radionuclide (also called disintegration rate) 2) Nuclide - A species of atom characterized by its mass number, atomic number and nuclear energy state, provided that the mean life in that state is long enough life time usually more than 10¹⁰ s to be observable. 			
	3) Radionuciide -	An unstable form of a c	nemical element that	
	1) Low Background Re	eta Counter		
Apparatus/Instruments	 Low Background Beta Counter Low Background beta counter of background less than 0.05 cps with about 30 percent efficiency for potassium-40 betas. The system shall be sensitive and capable to detect gross β activity below 0.2 mBq/m3 and 30 mBq/L, for air and for drinking water samples respectively. Shielding to Detector Sufficient shielding to reduce the counting system background to 0.05 cps or less (generally, about 50.8 mm lead shield is in use). Sample Holder Assembly Capable of taking planchets of minimum 25 mm diameter with 2 to 3 mm rims. Aluminium or Stainless Steel Planchet Minimum 25 mm diameter and with 2 to 3 mm rims. Air Oven Infrared Lamp - Maximum 500 W. 			

water and transfer to a 25 mm aluminium planchet using a glass dropper with attached rubber teat. Dry the slurry under an infra red lamp and transfer the precipitate completely using further small amount of distilled water.
1.2.4.Dry the planchet under infrared lamp. Ferric hydroxide when dried, flakes off (use a pointed glass rod to spread the sample uniformly in the planchet). After cooling the planchet, add a drop or two of 1 percent collodion in acetone and dry. The planchet is ready for counting.
2) Calibration :
2.1. For calibration, the normal practice is to use the radiation from potassium chloride of minimum purity level 99 percent (100 mg in an aluminium planchet) as a standard for the beta activity of mixed fission products. The average energy of potassium-40 is 0.40 MeV ($E_{max} = 1.31$ MeV). This is the best approximation of the energy for mixed fission products among the available long-lived isotopes. Alternatively electroplated Chlorine-36 beta sources with average energy of 0.24 MeV and $E_{max} = 0.71$ MeV can be used. NOTE —The potassium activity is taken from the nuclear data sheets of the National Academy of Sciences. The values are 28 betas per second per gram of potassium, and 3.5 gamma photons/s/g of potassium
2.2. The mass of the actual samples can usually be approximated quite well by a suitable mass of potassium chloride. In some cases where a more active standard is desired, pressed pellets are made up with several grams of potassium chloride (with a few percent of sodium stearate). These standards are first calibrated against the proper weight of potassium chloride and then are used merely to check reproducibility of the counters.
3) Activity measurements :
 3.1. Keep the low background beta counter 'ON' for at least an hour to stabilize in case the counter is not already 'ON 3.2. Take 3 600 s background counts with a blank aluminium planchet. 3.3. Determine the efficiency of the counter using a standard potassium-40 source (100 mg KCl). 3.4. Keep the sample planchet in the counting system and count for 3 600 s.

Calculation with units of expression	Sample count rate (Cs) = $C_s - C_b \pm \frac{\sqrt{S+b}}{3\ 600}$ Background countrate (C _b) = $\frac{b}{3\ 600} \pm \frac{\sqrt{b}}{3\ 600}$ Net count rate (C _{sb}) = $C_s - C_b \pm \frac{\sqrt{S+b}}{3\ 600}$ Activity (Bq/unit) = $\frac{C_{sb}}{E} \times \frac{100}{V} \pm \frac{\sqrt{S+b}}{3\ 600} \times \frac{100}{V}$ Where, S = sample counts for 3600 s b = background counts for 3600 s; E = efficiency of counter using a standard K-40 source, in percentage; and V = size of the sample taken for counting; Normally expressed in g or in ml except in case of air filter, for which sample is expressed in m ³ . In case of fallout deposition sampler, it is expressed in m ²	
Reference	IS 14194 (Part 1) : 2020	
Approved by	Scientific Panel on Methods of Sampling and Analysis	