एफएसएसए <mark>आई</mark>	Residue Analysis of Ethylene Oxide and 2-Chloroethanol in Foods by			
Issai	Gas Chromatography Tandem Mass Spectrometry			
भारतीय खाख सुरक्षाओर मानक प्राधिकरण Food Salvey and Standards Authority of India स्वास्थ्य और परिवार कल्याण मंत्रालय Ministry of Health and Family Wolfare				
Method No.	FSSAI.OM.ETO.001.2023	Revision No. & Date	0.0	
Introduction/ Caution	This is a selective and set	nsitive method for the resid	ue analysis of ethylene	
	oxide (EO) in diverse ma	trices, namely oilseeds, cer	eals, tea, spices, herbs,	
	dehydrated fruits, food additives, and fruits & vegetables. When a food item is			
	microorganisms, it rapidly reacts with the matrix components, especially			
	chloride, to form 2- chloroethanol (2-CE).			
	EO is reportedly carcinogenic (e.g., lymphoma and leukemia), mutagenic, and			
	reprotoxic, and is not approved as per the Food Safety and Standards Act.			
	Similarly, 2-CE demonstra	ates carcinogenic and reprod	luctive toxic properties	
	In some studies.			
	Here, a modified QuEChEF	RS (EN 15662) technique is do	ocumented for the rapid	
	analysis of EO and 2-CE u	Ising (PTV)-GC-MS/MS or HS	S-GC-MS/MS. When the	
	method is validated in a matrices the measurement	wide variety of dry and fres	h (high-moisture) food	
	with the analytical quality	control criteria.		
Principle	EO is highly volatile, and temperature of < 10 °C. It	hence it is important to provide the astimate both	epare the samples at a	
	well as headspace GC inject	tions. It is also possible to an	alvze these compounds	
	by automated headspace	e (HS)-trap GC-MS, in whicl	h, syringe-based HS is	
	combined with cryogen-f	ree trapping technology, ex	ploiting the multi-step	
	sample enrichment capab	ility to increase the method s	sensitivity.	
	EO and 2-CE are analyzed	l within the same GC-MS/MS	run. The recovery and	
	precision, when checked	d through intra- and inter	-laboratory validation	
	studies, are highly satisfac	ctory.		
Apparatus	A weighing balance with	high precision (Vibra, Adair	Dutt, Mumbai, India) is	
	used to weigh the certifie	d reference standards of EO	and 2-CE. A heavy-duty	
	refrigerated centrifuge, a	nd a microcentrifuge are use	ed at different stages of	
	sample preparation.		a at amorent stages of	
Chemicals	(a) Chemicals — EO (10	00 μ g/mL, in methanol) and	d 2-CE (100 µg/mL, in	
	methanol) having a purity	y >98%. HPLC grade water,	anhydrous magnesium	
	sunate, sourum chioride, sesquihydrate. PSA: Bond	esil. 40 um particle size) an	d octadecvlsilane (C18	
	ODS).	, par vere onlej un	(010)	
	(b) Materials— Polytetrat	luoroethylene (PTFE) syring	ge filters (0.22 μ m) and	
	Ultipor Nylon-6,6 membra	ane filters (0.2 μm pore size a	and 13 mm diameter)	

Preparation of standards	(a) Solutions—
and reagents	1. Due to the high volatility of EO, its standard solutions were prepared at a
	low temperature < 10 °C) using a thermocol box containing ice bags.
	2. As a diluting solvent, acetonitrile was placed in a freezer for at least 15
	min before use.
	3. The cold analytical standard solutions were pipetted into acetonitrile to
	generate the working standard solutions of EO (1 mg/mL) and 2-CE (1
	mg/mL).
	4. By serial dilution in acetonitrile, the calibration standards of 2.5, 5, 10, 25,
	and 50 μ g/L were prepared from this working standard.
	5. The matrix-matched standards of the same concentrations were also
	separately prepared.
	6. Prior to extraction, all stock solutions were preserved at a temperature of
	–20 °C to avoid degradation losses.
Preparation of Test	(a) Sample type — The samples of dry commodities [e.g., oil seeds (sesame
Samples	seed), cereal (wheat), spices (cumin seed, turmeric powder, chilli powder,
	ginger powder), pulses (moong bean), dehydrated fruits/vegetables (kiwi,
	mango, onion flakes), medicinal herbal powder (e.g., ashwagandha, <i>Withania</i>
	somnifera), black tea powder], high-moisture foods (e.g., tomatoes, grapes),
	food additives (e.g., guar gum, locust bean gum), processed spices (e.g.
	coriander powder, curry powder mix (mutton, egg, and vegetable flavors)
	were evaluated for method performance. Before analysis, the samples were
	placed in separate sample collection bags, transferred into airtight containers,
	and maintained at -20 °C until further use.
	(b) Sample preparation — With the modified QuEChERS (EN 15662)
	technique, the extraction of all dry and high-moisture matrices was performed
	at a temperature of ≤ 10 °C. The well-homogenized and pre-cooled samples (4
	g of powdered dry matrices and 10 g of high moisture matrices) were
	separately taken in 50 mL polypropylene centrifuge tubes. In the case of dry
	matrices, 5 mL of ice-cold water was added, and the sample was left standing
	for 15-20 min before vortexing for 2 min. To it, 10 mL of pre-cooled
	acetonitrile was added for extraction and vortexed for 15 min. With the
	exception of the addition of water, the same procedure was followed for the
	high moisture matrices, e.g., grape, tomato, etc. The mixture was vortexed for
	2 min with MgSO ₄ (4 g), NaCl (1 g), trisodium citrate dihydrate (1 g), and
	disodium citrate sesquihydrate (500 mg). Thereafter, the mixture was
	centrifuged for 5 min at 5000 rpm at \leq 10 °C. For the dry matrices, an aliquot
	of 1 mL of the cleaned supernatant was drawn and vortexed with 25 mg PSA +
	25 mg C18 + 150 mg anhydrous MgSO ₄ . But for certain other (relatively
	complex) dry matrices, such as coriander powder, curry powder mix (mutton,
	egg, and vegetable flavor), ashwagandha powder, guar gum, and locust bean
	gum, an aliquot of 1 mL of the cleaned supernatant was drawn and vortexed
	with 50 mg PSA + 50 mg C18 + 150 mg anhydrous MgSO ₄ .
	For high moisture matrices, grapes and tomatoes, 50 mg of PSA and 150 mg of
	anhydrous MgSO ₄ were added and vortexed for 30 s, followed by
	centrifugation at 10000 rpm for 5 min (≤10 °C).

	The extracts were analyzed by CC_MS/MS after filtration A PTEE suringe filter	
	(0.22 µm) was used for filtration of dry matrices and a Nylon 6.6 membrane	
	(0.22 µm) was used for filtration of dry matrices, and a Nyion-6,6 memorane	
	filter (0.2 μ m) was used for the filtration of wet matrices.	
	In multi-step enrichment HS-trap, the samples are incubated at 70 °C for 10	
	min with agitation at 300 rpm. To concentrate the analytes, three headspace	
	volumes (5 mL each) are collected from each sample and injected to a focusing	
	trap, which is electrically cooled to $-30 ^{\circ}$ C throughout the enrichment process.	
	An incubation period of 3 min in between each extraction re-establishes the	
	headspace equilibrium. Finally, the trap is desorbed at 250 °C to transfer the	
	analytes to the GC–MS system for separation and detection.	
Chromatography	GC- MS/MS analysis by liquid injection—	
conditions	1. A triple quadrupole GC-MS/MS with autosampler.	
	2. The GC separation was achieved on a Wax column (e.g., TG-Wax, 30 m	
	× 0.25 mm. 0.25 um film thickness).	
	3. Ultrapure helium (99.9999%) was used as the carrier gas, with a flow	
	rate of 1.2 mL/min.	
	4. The oven temperature program to be set as follows: an initial	
	temperature of 45 °C (2 min hold) was ramped to 230 °C at 50 °C /min	
	(5.3 min hold) which resulted in a total run time of 11 min	
	5 The transfer line and ion source temperatures were maintained at 250	
	5. The transfer line and for source temperatures were maintained at 250 and 220 °C, respectively. The DTV injector program started at 00 °C	
	and 230°C, respectively. The PTV injector program started at 90°C	
	(0.8 min hold) and increased to 250 °C (10 min hold) by rapid heating	
	at 12 °C/s.	
	6. Split injection was employed with a gold-baffled PTV injector linear (2,	
	2.75, and 120 mm). The injection volume was 2 μ L.	
	7. The SRM transitions may be optimized for EO and 2-CE by using the	
	auto-SRM feature of the software.	
	8. The SRM method was automatically optimized in terms of the	
	precursor ions, product ions, and collision energies by adjusting the	
	dwell time for each transition to achieve the highest sensitivity (S/N).	
	GC- MS/MS analysis by headspace injection— A gas chromatograph with	
	auto-injector and headspace sampler is used with a triple quadrupole mass	
	spectrometer. The software is used for data analysis and quantitation. The	
	bardware system allows the sample vial to enter the oven from the bottom	
	naturate system allows the sample via to enter the oven non the bottom,	
	reducing heat loss during the process. Through an advanced now control	
	system, the accuracy of flow rate is maintained. The pressure in the vial is	
	kept constant at 160 kPa.	
	Dynamic headspace GC-MS/MS parameters for EtO and 2-CE:	
	Column Rtx-VMS GC column: 60 m \times 0.45 mm, 2.55 μ m or	
	equivalent	
	Flow rate Helium, 3.0 mL/min	

	Injection	Split, split ratio: 20:1			
	mode	Insubstion temperatures 110 °C tran appling temps 10			
	neadspace	°C Trop	Incubation temperature: 110 °C, trap cooling temp: -10		
	program	C, Hap	02 kDo Equi	J. 200 C, pie	min
	0	$25 \circ C$ (5 m	92 KFa, Equi	indiat 20 °C/mi	111111 m to 225 °C (5
	Oven	35 °C (5 II	iin noid); ran	iped at 20 °C/mi	n to 255 °C (5
	temperature	min noid)			
	program				
	Mass Spectror	netric parame	eters		
	MS	Ionization	mode: Electro	on Ionization	
		Transfer lin	ne temperatur	e: 230 °C	
	parameters	Ion source temperature: 230 °C			
	MRM	Retention	Precursor	Product ion	CE
		time	ion (m/z)	(m/z)	
	transitions	(min)		(111.2)	
			44	14	20
	EO		44	28	5
		After the	44	29	5
		void	80	31	5
	2-CE	volume	80	43	5
			80	44	5
	In the case of t analyzed by HS- an aliquot of 1 n After centrifuga a 20 mL HS vial	the sesame so GC-MS/MS. Fo nL of the supe tion at 10,000 and carefully	eed matrix, 1 or chilli powd rnatant was c) rpm for 5 mi sealed before	00 μL of the ext er, turmeric powe leaned by d-SPE τ n, an aliquot of 10 the final analysis	tract was directly der, and guar gum, with 50 mg of PSA. 00 μL was taken in s.
Results	In this study, a simple and rapid temperature-controlled extraction method was established for the analysis of EO in a wide variety of dry and high- moisture food matrices. The optimized method provided satisfactory homogeneity, sensitivity, accuracy, and precision for both the target compounds in compliance with the method performance criteria of the SANTE/11312/2021 guideline. The LOQ of both compounds was ≤ 0.01 mg/kg. Furthermore, a satisfactory performance in the intra- and interlaboratory validation studies indicates its ruggedness and reproducibility. Owing to its satisfactory performance, this method is recommended for the determination of EO and its reaction product 2-CE in governmental and commercial food				

	testing laboratories. The method is expected to facilitate EU–India trade in a
	variety of fresh and processed commodities due to its high reproducibility.
Calculation	The detected residues were quantified through matrix-matched calibration, and EO (sum) was calculated using the following formula:
	EO (sum) $[mg/kg] = EO + 2 - CE \times 0.55$ (the conversion factor)
LOQ	The LOQ was set as the lowest concentration at which the results met the
	method performance evaluation criteria and were estimated using matrix-
	matched standards. At LOQ, the S/N of the quantifier SRM was >10:1. The recoveries at LOQ were above 70%.
Storage and Safety	Following storage and safety precautions shall be taken while handling it:
Precautions	1. EO is highly volatile, and hence it was important to analyze the samples at a temperature of < 10 °C.
	2. To prevent skin, eye, and inhalation contact, put on the proper protective evewear and an apron with long sleeves.
	 Both EtO and 2-CE are toxic and carcinogenic, thus require butyl rubber gloves for handling.
Reference	• Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. SANTE/11312/2021.
	• EN 15662:2018. Foods of plant origin. Multimethod for the determination of pesticide residues using GC- and LC-based analysis following acetonitrile extraction/partitioning and cleanup by dispersive SPE. Modular QuEChERS-method.
	• Nerpagar A.,, Banerjee Kaushik (2023). Dynamic headspace GC-MS/MS analysis of ethylene oxide and 2-chloroethanol in dry food commodities: a novel approach <i>Journal of Environmental Science and Health, Part B</i> <u>https://doi.org/10.1080/03601234.2023.2264740</u>
	• Patil R., Langade N.,, Banerjee Kaushik (2023). Development and validation of a residue analysis method for ethylene oxide and 2-chloroethanol in foods by gas chromatography tandem mass spectrometry. <i>ACS Agricultural Science and Technology</i> <u>https://doi.org/10.1021/acsagscitech.2c00319</u>
Approved by	Scientific Panel on Methods of Sampling and Analysis