## File No. 11014/04/2021-QA (E file 1349)

### Food Safety and Standards Authority of India

(A statutory Authority established under the Food Safety and Standards Act, 2006) (Quality Assurance Division)

FDA Bhawan, Kotla Road, New Delhi - 110002

Dated, the 20 July, 2021

#### ORDER

Subject: Revised FSSAI Manual of Methods of Analysis of Foods – Alcoholic Beverages – reg.

Revised FSSAI "Manual of Methods of Analysis of Foods – Alcoholic Beverages" which has been approved by the Food Authority in its  $35^{th}$  meeting held on 24.06.2021 is enclosed herewith.

- 2. This manual shall be used by the laboratories with immediate effect. It supersedes the earlier manual on Alcoholic Beverages issued vide Office Order No. 1-90/FSSAI/SP (MS&A)/2009 dated 03.07.2019.
- 3. Since the process of updation of test methods is dynamic, any changes happening from time to time will be notified separately. Queries/concerns, if any, may be forwarded to <code>email: sp-sampling@fssai.gov.in</code>, <code>dinesh.k@fssai.gov.in</code>

Encl: as above

(Harinder Singh Oberoi) Advisor (QA)

To:

- 1. All FSSAI Notified Laboratories
- 2. All State Food Testing Laboratories



MANUAL OF METHODS OF ANALYSIS OF FOODS ALCOHOLIC BEVERAGES

## **PREFACE**

Food safety requires an assurance that food will not cause any harm to the consumer, when it is prepared and/or consumed according to its intended use. There is a significant challenge in ensuring food safety to protect public health. Safeguarding food safety in today's complex world is a formidable task and is possible only with an intensive effort of all the stakeholders including regulatory authorities, industry and consumers.

The FSSAI Manual of Methods for Analysis of Alcoholic Beverages is principally intended to provide unified, up-to-date testing methods for regulatory compliance. The manual brings together testing methodologies approved by FSSAI for use in surveillance and implementing the regulatory program. The objective here is to adopt "One Parameter - One Method" approach. These methods are dynamic and will be constantly updated, commensurate with the latest technological advancements in food analysis. The FSSAI notified laboratories shall use these testing methods only for analyzing samples under the Food Safety and Standards Act, 2006 and Food Safety and Standards Regulations, 2011.

Any suggestions/feedback from the stakeholders, which will contribute towards updating the manuals from time to time are welcome.

Singh

Shri ArunSinghal Chief Executive Officer, Food Safety and Standards Authority of India, FDA Bhawan, Kotla Road, New Delhi – 110002

# **ACKNOWLEDGEMENT**

My deepest sense of gratitude and indebtedness to all the Members of the Panel on "Methods of Sampling and Analysis" especially Dr. Jagan Mohan Rao whose help, knowledge and insight has led to the successful revision of this manual.

Sincere thanks to the Panel, Chairman for their valuable guidance and encouragement and the Secretariat of this panel who have extended their support during this revision process.

Deepest appreciation to the Chairperson, FSSAI and CEO, FSSAI for their cooperation, support and constant encouragement without which the work would not have seen the light of day.

July 2021

Dr. Harinder Singh Oberoi Advisor (QA), Food Safety and Standards Authority of India, FDA Bhawan, Kotla Road, New Delhi – 110002



# **List of Contributors**

| Name                      | Organization                                              |  |  |
|---------------------------|-----------------------------------------------------------|--|--|
| Dr. Rajan Sharma          | ICAR-National Dairy Research Institute, Karnal            |  |  |
| Dr. Ajit Dua              | Punjab Biotechnology Incubator, Mohali                    |  |  |
| Dr. AK Dikshit            | Retd. from Division of Agricultural Chemicals, Indian     |  |  |
|                           | Agricultural Research Institute (IARI), Pusa, New Delhi   |  |  |
| Dr. Alok Kumar Srivastava | CSIR-Central Food Technological Research Institute        |  |  |
|                           | (CFTRI), Mysuru                                           |  |  |
| Dr. Jagan Mohan Rao       | Retd. from CSIR-Central Food Technological Research       |  |  |
|                           | Institute (CFTRI), Mysuru                                 |  |  |
| Dr. Kiran N Bhilegaonkar  | ICAR-Indian Veterinary Research Institute Regional        |  |  |
|                           | Station, Pune                                             |  |  |
| Dr. Lalitha Ramakrishna   | Retd. from CSIR-Central Food Technological Research       |  |  |
| Gowda                     | Institute (CFTRI), Mysuru                                 |  |  |
| Dr. Mohana Krishna Reddy  | CSIR- Indian Institute of Chemical Technology, Hyderabad  |  |  |
| Mudiam                    |                                                           |  |  |
| Dr. Rajesh R Nair         | CALF, National Dairy Development Board, Anand             |  |  |
| Dr. Raju Khan             | CSIR-Advanced Materials & Processes Research Institute,   |  |  |
|                           | Bhopal                                                    |  |  |
| Dr. Reena Das             | Postgraduate Institute of Medical Education and Research, |  |  |
|                           | Chandigarh                                                |  |  |
| Dr. Sanu Jacob            | Food Safety and Standards Authority of India              |  |  |
| Dr. Dinesh Kumar          | Food Safety and Standards Authority of India              |  |  |
| Shri Shailender Kumar     | Food Safety and Standards Authority of India              |  |  |
| Ms. Kanika Aggarwal       | Food Safety and Standards Authority of India              |  |  |
| Shri Ratish Ramanan       | Food Safety and Standards Authority of India              |  |  |

# TABLE OF CONTENTS

| S. No. | TITLE                           |                                                                                                               |       |  |
|--------|---------------------------------|---------------------------------------------------------------------------------------------------------------|-------|--|
| 1.     | Alcoholic Beverages and Types   |                                                                                                               |       |  |
| 2.     | General Glassware and Apparatus |                                                                                                               | 2     |  |
|        | METHOD NO.                      | METHOD                                                                                                        |       |  |
| 3.     | FSSAI 13.001:2021               | Determination of Ethyl Alcohol Content - Pycnometer<br>Method or Hydrometer Method                            | 3-4   |  |
| 4.     | FSSAI 13.002:2021               | Determination of Ethyl Alcohol Content - Distillation<br>Method (for products containing high volatile acids) | 5-6   |  |
| 5.     | FSSAI 13.003:2021               | Gas Chromatography-FID Method of Alcohol Estimation using Chromosorb Support Columns                          | 7     |  |
| 6.     | FSSAI 13.004:2021               | Determination of Ethyl Alcohol Content - Dichromate<br>Oxidation Method                                       | 8-10  |  |
| 7.     | FSSAI 13.005:2021               | Gas Chromatography-FID Method of Ethyl Alcohol<br>Estimation using Carbowax (on carbopack support)<br>Column  | 11-12 |  |
| 8.     | FSSAI 13.006:2021               | Determination of Residue on Evaporation                                                                       | 13    |  |
| 9.     | FSSAI 13.007:2021               | Determination of Total Acids (as Tartaric Acid) - Method I (for colourless liquors)                           | 14    |  |
| 10.    | FSSAI 13.008:2021               | Determination of Total Acids (as Tartaric Acid) - Method II (for coloured liquors such as Wine, Toddy)        | 15    |  |
| 11.    | FSSAI 13.009:2021               | Determination of Volatile Acids (as Acetic Acid)                                                              | 16    |  |
| 12.    | FSSAI 13.010:2021               | Determination of Total Esters                                                                                 | 17    |  |
| 13.    | FSSAI 13.011:2021               | Determination of Esters - Gas Chromatographic Method using Capillary Column                                   | 18-21 |  |
| 14.    | FSSAI 13.012:2021               | Determination of Esters - Gas Chromatographic Method using Packed Column                                      | 22-23 |  |
| 15.    | FSSAI 13.013:2021               | Determination of Higher Alcohols - Titrimetric Method                                                         | 24-25 |  |
| 16.    | FSSAI 13.014:2021               | Determination of Higher Alcohols - Spectrophotometric Method                                                  | 26-27 |  |
| 17.    | FSSAI 13.015:2021               | Determination of Higher Alcohols - Gas<br>Chromatographic Method using Capillary Column                       | 28    |  |
| 18.    | FSSAI 13.016:2021               | Determination of Higher Alcohols - Gas<br>Chromatographic Method using Packed Column                          | 29    |  |
| 19.    | FSSAI 13.017:2021               | Determination of Higher Alcohols - Gas Chromatographic Method using Calibration Curves of Standards           |       |  |
| 20.    | FSSAI 13.018:2021               | Determination of Aldehydes - Titrimetric Method                                                               | 32    |  |
| 21.    | FSSAI 13.019:2021               | Determination of Aldehydes – Gas Chromatographic<br>Method using Capillary Column                             | 33    |  |
| 22.    | FSSAI 13.020:2021               |                                                                                                               |       |  |

|     |                   | Method using Packed Column                                                                                                                               |       |  |
|-----|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| 23. | FSSAI 13.021:2021 | Determination of Furfural - Colorimetric Method                                                                                                          | 35-36 |  |
| 24. | FSSAI 13.022:2021 | Determination of Furfural - Gas Chromatographic Method                                                                                                   | 37    |  |
| 25. | FSSAI 13.023:2021 | Determination of Copper / Iron - Atomic Absorption<br>Spectrophotometric (AAS) Method                                                                    | 38-39 |  |
| 26. | FSSAI 13.024:2021 | Determination of Copper using Diethyldithiocarbamate                                                                                                     | 40-42 |  |
| 27. | FSSAI 13.025:2021 | Determination of Copper using Potassium Ferrocyanide                                                                                                     | 43-45 |  |
| 28. | FSSAI 13.026:2021 | Determination of Copper - Cuperthol Method                                                                                                               | 46-47 |  |
| 29. | FSSAI 13.027:2021 | Determination of Methyl Alcohol - Spectrophotometric Method                                                                                              | 48-49 |  |
| 30. | FSSAI 13.028:2021 | Determination of Methyl Alcohol - Gas<br>Chromatographic Method                                                                                          | 50-51 |  |
| 31. | FSSAI 13.029:2021 | Determination of Total Sulphur Dioxide (for Wines only) - Modified Monier Williams Method (Shiphton's Method)                                            | 52-53 |  |
| 32. | FSSAI 13.030:2021 | Determination of Total Sulphur Dioxide (for Wines only) - Rosaniline Colorimetric Method                                                                 | 54-56 |  |
| 33. | FSSAI 13.031:2021 | Determination of Tannins (for Wines only)                                                                                                                | 57-58 |  |
| 34. | FSSAI 13.032:2021 | Determination of Extracts in Wines                                                                                                                       | 59    |  |
| 35. | FSSAI 13.033:2021 | Determination of Sorbic Acid                                                                                                                             | 60    |  |
| 36. | FSSAI 13.034:2021 | Determination of Reducing Sugar - Lane and Eynon (Fehling) Method                                                                                        | 61-63 |  |
| 37. | FSSAI 13.035:2021 | Determination of Reducing Sugar – DNS Method                                                                                                             | 64-65 |  |
| 38. | FSSAI 13.036:2021 | Determination of Individual Sugars – HPLC                                                                                                                | 66-67 |  |
| 39. | FSSAI 13.037:2021 | Determination of Total Sugar – Fehling Solution Method                                                                                                   | 68-71 |  |
| 40. | FSSAI 13.038:2021 | Determination of Total Sugar - Anthrone Method                                                                                                           | 72-73 |  |
| 41. | FSSAI 13.039:2021 | Determination of Carbonation (GV)                                                                                                                        | 74    |  |
| 42. | FSSAI 13.040:2021 | Determination of pH                                                                                                                                      | 75-78 |  |
| 43. | FSSAI 13.041:2021 | Determination of Anethole - Gas Chromatography determination of Trans-anethole in Spirit Drinks of Vitivinicultural origin                               | 79-81 |  |
| 44. | FSSAI 13.042:2021 | Determination of Trans-anethole in Spirit Drinks containing large amount of Sugar by GC Analysis                                                         | 82-83 |  |
| 45. | FSSAI 13.043:2021 | Determination of the Principal Compounds Extracted from Wood during Ageing of Spirit Drinks of Vitivinicultural origin                                   | 84-86 |  |
| 46. | FSSAI 13.044:2021 | Determination of α-dicarbonyl Compounds in Spirituous Beverages of Viti-vinicultural Origin by Gas Chromatography after derivation by 1,2 diaminobenzene |       |  |
| 47. | FSSAI 13.045:2021 | Determination of Propanol-2-ol by Gas Chromatography                                                                                                     |       |  |
| 48. | FSSAI 13.046:2021 | Determination of Absorbance Test in UV light of                                                                                                          |       |  |

|     |                                                                                              | Neutral Alcohol                                                                  |         |
|-----|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------|
| 49. | FSSAI 13.047:2021                                                                            | Determination of Ethyl Carbamate                                                 | 94-95   |
| 50. | FSSAI 13.048:2021                                                                            | Determination of Colour Intensity                                                | 96      |
| 51. | FSSAI 13.049:2021                                                                            | Determination of Calcium by Atomic Absorption<br>Spectrophotometric (AAS) Method | 97-98   |
| 52. | FSSAI 13.050:2021 Determination of Lead by Atomic Absorption Spectrophotometric (AAS) Method |                                                                                  |         |
| 53. | Annexure I                                                                                   |                                                                                  | 101-120 |
| 54. | Annexure-II                                                                                  |                                                                                  | 121     |

Note: The test methods given in the manual are standardized / validated/ taken from national or international methods or recognized specifications, however it would be the responsibility of the respective testing laboratory to verify the performance of these methods onsite and ensure that it gives proper results before putting these methods in to use.

### MANUAL FOR ANALYSIS OF ALCOHOLIC BEVERAGES

### 1.0 Alcoholic Beverages and Types

Alcoholic beverages comprise a large group of beverages that contain varying amounts of alcohol (ethanol). These are produced by fermentation of grains, fruits, or other sources of sugar. The consumption of alcohol plays an important social role in many cultures. Most countries have laws regulating the production, sale, and consumption of alcoholic beverages. Following types alcoholic beverages are produced industrially and consumed.

- Rum: Rum is a liquor made by fermenting then distilling sugarcane molasses or sugarcane juice, has a typical alcohol concentration of 40% ABV. The distillate, a clear liquid, is usually aged in oak barrels.
- Gin: Gin is a distilled alcoholic drink (have anywhere from 35% to 55% ABV) that derives its predominant flavour from juniper berries (*Juniperus communis*). Gin originated as a medicinal liquor made by monks and alchemists across Europe, particularly in southern France, Flanders and the Netherlands, to provide aqua vita from distillates of grapes and grains.
- Whisky: Whisky is a type of distilled alcoholic beverage (ABV of whiskey ranges from 40% to 50%) made from fermented grain mash or by distilling beer. Various grains are used for different varieties, including barley, corn, rye, and wheat. Whisky is typically aged in wooden casks, generally made of charred white oak
- Brandy: Brandy is a liquor produced by distilling wine. Brandy generally contains 35–60% alcohol by volume and is typically consumed as an after-dinner digestif. Some brandies are aged in wooden casks. Varieties of wine brandy can be found. The most renowned are Cognac and Armagnac.
- Beer: Beer (have ~5% ABV) is brewed from cereal grains—most commonly from malted barley, wheat, maize, and rice.
- Vodka: Vodka (have ~40% ABV) is a clear distilled alcoholic beverage. In general, it is made by distilling the liquid from cereal grains (e.g., wheat) and vegetables (e.g., Potatoes) containing starch, that are fermented with yeast. There are different varieties originating in Poland, Russia and Sweden. It is composed primarily of water and ethanol, but sometimes with traces of flavorings (essences of herbs, fruits, grasses, and spices). Some modern brands are using fruits, honey or maple sap as the base.
- Wine: Wine is an alcoholic drink typically made from fermented grape juice. Yeast consumes the sugar in the grapes and converts it to ethanol, carbon dioxide, and heat. Different varieties of grapes and strains of yeasts produce different styles of wine. The range of ABV for unfortified wine is about 5.5% to 16%, with an average of 11.6%.
- Rice Wine: It is an alcoholic beverage fermented and distilled from rice and typically has an alcohol content of 18-25% ABV. Rice wine is made by the fermentation of rice starch that has been converted to sugars. Microbes are the source of the enzymes that convert the starches to sugar. It is traditionally consumed in East Asia, Southeast Asia and Northeast India at formal dinners and banquets and in cooking.

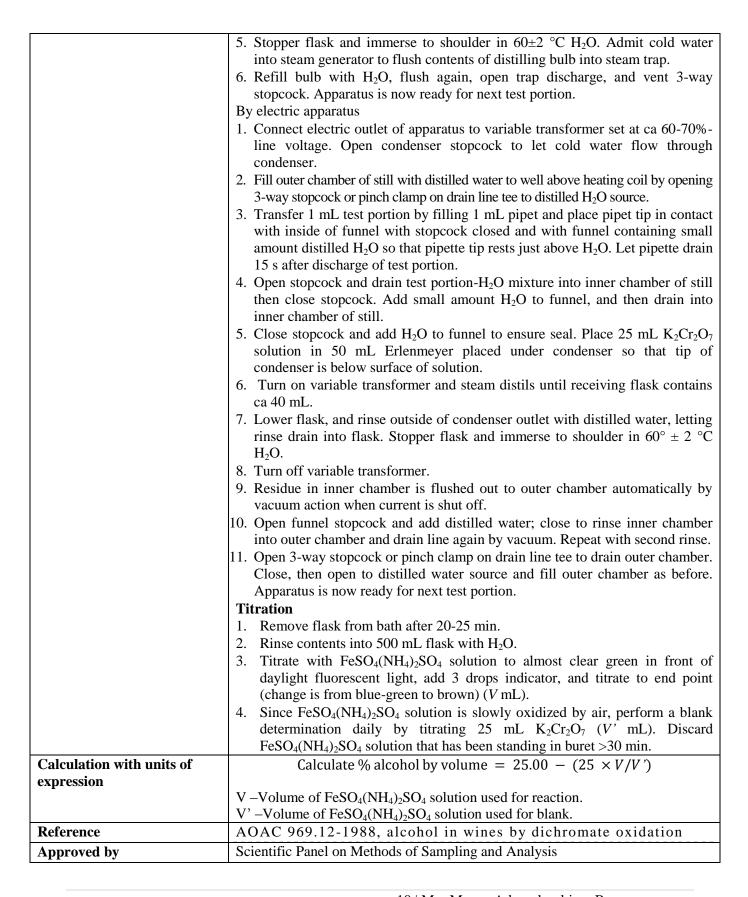
- Toddy: Toddy (have 4-6% ABV), known by several local names, is an alcoholic beverage created from the sap of various species of palm tree such as the palmyra, date palms, and coconut palms
- Fenny (Cashew & Coconut etc.): Fenny (have 42-43 ABV), is a spirit produced in Goa, India. The two most popular types of feni are cashew fenny and toddy coconut palm fenny, depending on the original ingredient; however, many other varieties are sold.

### 2.0 General Glassware and Apparatus

- 1. Beakers (different sizes)
- 2. Conical flasks with and without lids (different sizes)
- 3. Round bottom flasks (different sizes)
- 4. Pipettes (different sizes)
- 5. Burettes (different sizes)
- 6. Measuring cylinders (different sizes)
- 7. Buchner funnels (different sizes)
- 8. Air condensers
- Water condensers
- 10. Distillation heads
- 11. Receiving adapters
- 12. Ground glass joints
- 13. Thermometers (different minimum and maximum temperatures in centigrade degrees)
- 14. Wash bottles (different sizes)
- 15. Separating funnels (different sizes)
- 16. Petri dishes (different sizes)
- 17. Weighing balances (upto milligram)
- 18. Weighing balances (upto gram)
- 19. Air Oven
- 20. Water bath
- 21. Whatman filter papers (different numbers)

| f                                                                                                                                                         | Determination of Ethyl Alcohol Content - Pycnometer Method or Hydrometer                                                                                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Weilfare, Government of India | Method                                                                                                                                                     |  |  |
| Method No.                                                                                                                                                | FSSAI 13.001:2021                                                                                                                                          |  |  |
| Scope                                                                                                                                                     | Pycnometer Method or Hydrometer Method (after distillation)-Specific gravity of                                                                            |  |  |
|                                                                                                                                                           | the alcoholic beverages can be determined. The method is applicable to all alcoholic                                                                       |  |  |
|                                                                                                                                                           | beverages.                                                                                                                                                 |  |  |
| Principle                                                                                                                                                 | It is determined by distilling the alcoholic beverage and measuring the specific                                                                           |  |  |
|                                                                                                                                                           | gravity of the distillate. Sp. gravity Vs Alcohol percent (Refer Annexure - I and Annexure - II).                                                          |  |  |
| Apparatus /Instruments                                                                                                                                    | General Glassware and apparatus (Refer 2.0 at page no. 2).                                                                                                 |  |  |
| Apparatus/mstruments                                                                                                                                      | 2. Distillation Unit: Distillation flask of 500 mL capacity is connected to water                                                                          |  |  |
|                                                                                                                                                           | cooled condenser and the tip of the condenser is extended through a glass tube                                                                             |  |  |
|                                                                                                                                                           | with a bulb by means of standard B14 joint. The other end of the glass tube                                                                                |  |  |
|                                                                                                                                                           | should reach the bottom of the receiver flask.                                                                                                             |  |  |
|                                                                                                                                                           |                                                                                                                                                            |  |  |
|                                                                                                                                                           |                                                                                                                                                            |  |  |
|                                                                                                                                                           | <u> </u>                                                                                                                                                   |  |  |
|                                                                                                                                                           |                                                                                                                                                            |  |  |
|                                                                                                                                                           |                                                                                                                                                            |  |  |
|                                                                                                                                                           |                                                                                                                                                            |  |  |
|                                                                                                                                                           |                                                                                                                                                            |  |  |
|                                                                                                                                                           | condenser                                                                                                                                                  |  |  |
|                                                                                                                                                           | Claisen adaptor                                                                                                                                            |  |  |
|                                                                                                                                                           | adaptor                                                                                                                                                    |  |  |
|                                                                                                                                                           |                                                                                                                                                            |  |  |
|                                                                                                                                                           | water out                                                                                                                                                  |  |  |
|                                                                                                                                                           | water in                                                                                                                                                   |  |  |
|                                                                                                                                                           |                                                                                                                                                            |  |  |
|                                                                                                                                                           | distillation flask                                                                                                                                         |  |  |
|                                                                                                                                                           | collect                                                                                                                                                    |  |  |
|                                                                                                                                                           | Ŭ distillate                                                                                                                                               |  |  |
|                                                                                                                                                           | (Figure is adopted from FSSAI Manual of Methods of Analysis of Foods:                                                                                      |  |  |
|                                                                                                                                                           | Alcoholic beverages, 2019, Page 5).                                                                                                                        |  |  |
|                                                                                                                                                           | 3. Pycnometer: 50 mL capacity/ SG Hydrometer, Short range (0.96 – 1.00).                                                                                   |  |  |
|                                                                                                                                                           | 4. Thermometer: 0-100 °C                                                                                                                                   |  |  |
| N/-4                                                                                                                                                      | 5. Volumetric flask: 200 mL capacity                                                                                                                       |  |  |
| Materials and reagents Method of Analysis                                                                                                                 | Alcoholic beverages                                                                                                                                        |  |  |
| Michiga di Amarysis                                                                                                                                       | 1. Transfer exactly 200 mL of alcoholic drink into a 500 mL distillation flask containing about 25 mL of distilled water and a few pieces of pumice stone. |  |  |
|                                                                                                                                                           | 2. Distil the contents in about 35 min and collect the distillate in a 200 mL                                                                              |  |  |
|                                                                                                                                                           | volumetric flask till the volume almost reaches the mark.                                                                                                  |  |  |
|                                                                                                                                                           | 3. Bring the distillate to room temperature 20 °C and make up to volume with                                                                               |  |  |
|                                                                                                                                                           | distilled water and mix thoroughly.                                                                                                                        |  |  |
|                                                                                                                                                           | Find out the specific gravity of the distillate as follows:                                                                                                |  |  |
|                                                                                                                                                           | 4. Take a clean and dry pycnometer and weigh it empty along with the stopper at 20 °C (W).                                                                 |  |  |
|                                                                                                                                                           | 5. Fill it with the liquor sample distillate to the brim and insert the stopper gently.                                                                    |  |  |

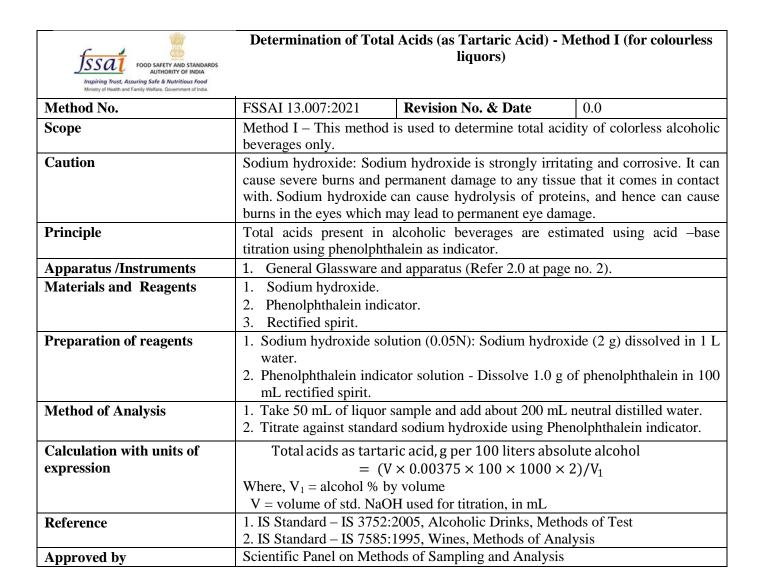
|                                      | 6. Wipe the Liquid that spills out using water absorbing filter paper and weigh at 20 °C(W1). 7. Next remove the liquor sample distillate and wash it with distilled water.                                                                                                                                      |  |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                      | 8. Fill the pycnometer with distilled water in the same manner as described above and at 20 °C take the weight (W2).                                                                                                                                                                                             |  |  |
| Calculation with units of expression | Specific gravity= $\frac{W1-W2}{W2-W}$ W: Weight of Empty Pycnometer W1: Weight of Empty Pycnometer with liquor sample W2: Weight of Empty Pycnometer with water Find out the corresponding alcohol percent by volume from the table showing                                                                     |  |  |
|                                      | Specific Gravity Vs Alcohol percent (Refer Annexure I).  Alternatively, use a SG hydrometer to find out the specific gravity (SG) and use the following equation to convert SG to % Alcohol.  % Alcohol (v/v) = 8610.6 – (16584× SG) + (7973.3 × SG 2)  (One can use computer program to automate this process). |  |  |
| Reference                            | 1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test 2. IS Standard – IS 7585:1995, Wines, Methods of Analysis                                                                                                                                                                                       |  |  |
| Approved by                          | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                                                                                                             |  |  |


| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Willede. Government of India | Determination of Ethyl Alcohol Content - Distillation Method (for products containing high volatile acids)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Method No.                                                                                                                                               | FSSAI 13.002:2021 <b>Revision No. &amp; Date</b> 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Scope                                                                                                                                                    | Distillation method is used for alcoholic beverages products containing high volatile acids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Caution                                                                                                                                                  | <ol> <li>Petroleum ether: Harmful when inhaled in high concentrations or ingested. Petroleum ether may cause dizziness and drowsiness if inhaled, and high concentrations may result in central nervous system depression, and loss of consciousness.</li> <li>Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It can cause severe burns and permanent damage to any tissue that it comes in contact with. Sodium hydroxide can cause hydrolysis of proteins, and hence can cause burns in the eyes which may lead to permanent eye damage.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Principle                                                                                                                                                | Volatile acids were extracted into petroleum ether from the Sodium chloride saturated alcoholic beverage solution and aqueous alcoholic layer distilled and specific gravity of the distillate measured.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Apparatus /Instruments                                                                                                                                   | 1. General Glassware and apparatus (Refer 2.0 at page no. 2). 2. Volumetric flask, 200 mL capacity. 3. Separatory funnels, 500 mL capacity. 4. Distillation unit with assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Materials and Reagents                                                                                                                                   | <ol> <li>Alcoholic beverages</li> <li>Sodium chloride</li> <li>Petroleum ether 40- 60 °C grade</li> <li>Sodium hydroxide</li> <li>Phenolphthalein indicator</li> <li>Rectified spirit</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Preparation of reagents                                                                                                                                  | Sodium hydroxide solution (0.1N): Sodium hydroxide (4g) dissolved in 1 L water.      Phenolphthalein indicator solution - Dissolve 1.0 g of phenolphthalein in 100 mL rectified spirit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Method of Analysis                                                                                                                                       | <ol> <li>Measure 200 mL of liquor sample in a volumetric flask.</li> <li>Transfer to aseparatory funnel and wash the volumetric flask with about 100 mL water.</li> <li>Add sodium chloride powder so that the solution becomes almost saturated with NaCl.</li> <li>Add about 100 mL of petroleum ether and shake for 2-3 min.</li> <li>Allow the layers to settle and transfer the lower layer to the distillation flask.</li> <li>Add about 20-30 mL of saturated sodium chloride solution to the petroleum ether layer and gently shake.</li> <li>Allow again to settle and transfer the aqueous layer to the distillation flask.</li> <li>Mix gently and make the solution just alkaline with NaOH solution using phenolphthalein indicator.</li> <li>Add little pumice stone and connect the distillation assembly via condenser to the volumetric flask.</li> <li>Distill gently and collect the distillate in the volumetric flask almost to the mark.</li> <li>Bring the contents to room temperature and make up the volume with</li> </ol> |  |  |

|                           | distilled water and mix well.                                                        |  |
|---------------------------|--------------------------------------------------------------------------------------|--|
| Calculation with units of | Determine the specific gravity of the distillate as described in earlier section and |  |
| expression                | find out the corresponding alcohol percent by volume from the table showing Sp.      |  |
|                           | gravity Vs Alcohol percent.                                                          |  |
| Reference                 | 1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test                     |  |
|                           | 2. IS Standard – IS 7585:1995, Wines, Methods of Analysis                            |  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                                 |  |

| force 1                                                                                                                                                    | Gas Chromatography-FID Method of Alcohol Estimation using<br>Chromosorb Support Columns                                                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA  Inspiring Trust, Assuring Safe & Nutritious Food  Ministry of Health and Family Welfare, Government of India |                                                                                                                                                     |  |
| Method No                                                                                                                                                  | FSSAI 13.003:2021                                                                                                                                   |  |
| Scope                                                                                                                                                      | Gas Chromatography-Flame Ionization Detection Method of alcohol estimation                                                                          |  |
| •                                                                                                                                                          | using chromosorb support columns and is applicable to all alcoholic beverages                                                                       |  |
| Caution                                                                                                                                                    | Propanol: Exposure to propyl alcohol might irritate eyes, nose, and throat.                                                                         |  |
|                                                                                                                                                            | Exposure to high concentrations can cause headache, drowsiness, dizziness,                                                                          |  |
|                                                                                                                                                            | confusion, nausea and vomiting. Propyl alcohol may cause liver damage. Propyl                                                                       |  |
|                                                                                                                                                            | alcohol is a flammable liquid and a dangerous fire hazard.                                                                                          |  |
| Principle                                                                                                                                                  | n-Propanol internal standard is added to sample and ethanol is determined by                                                                        |  |
|                                                                                                                                                            | GC - flame ionization detection.                                                                                                                    |  |
| Apparatus / Instruments                                                                                                                                    | 1. General Glass ware and apparatus (Refer 2.0 at page no. 2).                                                                                      |  |
|                                                                                                                                                            | 2. Gas chromatograph - With the flame ionization detector and 6ft $\times$ 1/8in.                                                                   |  |
|                                                                                                                                                            | $(1.8m \times 0.3cm)$ stainless steel or glass column containing 80-100 mesh                                                                        |  |
|                                                                                                                                                            | chromosorb 103. He or N <sub>2</sub> carrier gas 20 mL/min; injector temperature 175                                                                |  |
|                                                                                                                                                            | °C, column temperature 185 °C isothermal (adjust temperature so ethanol                                                                             |  |
|                                                                                                                                                            | elutes in 1min, n-propanol in 1.6 min); detector temperature 250 °C; chart                                                                          |  |
|                                                                                                                                                            | speed and attenuation as required based on instrument used.                                                                                         |  |
|                                                                                                                                                            | Note: - Optimum operating conditions may vary with column and instrument                                                                            |  |
|                                                                                                                                                            | used and must be determined by using standard solutions. Adjust the parameters                                                                      |  |
| Materials and reagents                                                                                                                                     | for maximum peak sharpness and optimum separation.  1. Alcoholic beverages.                                                                         |  |
| Waterials and reagents                                                                                                                                     | 2. n-Propanol.                                                                                                                                      |  |
|                                                                                                                                                            | 3. Ethanol.                                                                                                                                         |  |
| Preparation of reagents                                                                                                                                    | 1.n-Propanol- Internal standard 5% aqueous stock solution. Refrigerate.                                                                             |  |
| · Furnisaria · · · · · · · · · · ·                                                                                                                         | 2.Ethanol standard solutions - 3,4, 5, 6, 7, and 8% aqueous ethanol solutions.                                                                      |  |
|                                                                                                                                                            | Determine exact % ethanol by pycnometer or hydrometer. Alternatively,                                                                               |  |
|                                                                                                                                                            | prepare standard solutions by quantitative dilution of concentrated ethanol                                                                         |  |
|                                                                                                                                                            | solution analyzed by one of above techniques. Keep solutions refrigerated.                                                                          |  |
| Method of analysis                                                                                                                                         | 1. Pipet 5.0 mL ethanol standard solutions into separate glass-stoppered flasks.                                                                    |  |
|                                                                                                                                                            | 2. Add 5.0 mL internal standard solution to each and mix well.                                                                                      |  |
|                                                                                                                                                            | 3. De-carbonate beer by filtering through S&S 560 or equivalent paper. Pipet                                                                        |  |
|                                                                                                                                                            | 5.0 mL into glass-stoppered flask. Add 5.0 mL aqueous n-propanol internal                                                                           |  |
|                                                                                                                                                            | standard solution. Mix thoroughly by swirling.                                                                                                      |  |
|                                                                                                                                                            | 4. Inject 0.2 μL of each standard solution in duplicate and measure peak heights                                                                    |  |
|                                                                                                                                                            | (integrator may be used). Calculate ratio of ethanol to n-propanol peaks and                                                                        |  |
|                                                                                                                                                            | average for each concentration. Plot ratio against concentration and calculate                                                                      |  |
|                                                                                                                                                            | slope of line. Repeat analysis of 5% ethanol standard solution each day.  5. Inject 0.2 µL of beverage (prepared beer solution) onto GC column, and |  |
|                                                                                                                                                            | determine ratio of ethanol to n-propanol peaks.                                                                                                     |  |
| Calculation with units of                                                                                                                                  | Ethanol, $\%$ (v/v) = (peak area ethanol / peak area n – propanol)                                                                                  |  |
| expression                                                                                                                                                 | (pountaion propullor)                                                                                                                               |  |
| Reference                                                                                                                                                  | AOAC 984.14, 1988, Gas chromatographic method                                                                                                       |  |
| Approved by                                                                                                                                                | Scientific Panel on Methods of Sampling and Analysis                                                                                                |  |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA  Inspiring Trust, Assuring Safe & Nutritious Food  Ministry of Health and Family Welfare, Government of India | Determination of Ethyl Alcohol Content - Dichromate Oxidation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|
| Method No.                                                                                                                                                 | FSSAI 13.004:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Revision No. & Date        | 0.0                    |
| Scope                                                                                                                                                      | Dichromate oxidation m alcoholic beverages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ethod is used to determine | the alcohol content in |
| Caution                                                                                                                                                    | <ol> <li>Sulphuric acid: Concentrated sulfuric acid is extremely corrosive and can cause serious burns when not handled properly. This chemical is unique because it not only causes chemical burns, but also secondary thermal burns as a result of dehydration. This dangerous chemical is capable of corroding skin, paper, metals, and even stone in some cases. If sulfuric acid makes direct contact with the eyes, it can cause permanent blindness. If ingested, this chemical may cause internal burns, irreversible organ damage, and possibly death.</li> <li>Potassium dichromate: Corrosive. Causes severe burns to every area of contact. Harmful if swallowed or inhaled. Affects the respiratory system, liver, kidneys, eyes, skin and blood.</li> <li>Ferrous Ammonium Sulfate: Ferrous Ammonium Sulfate can affect, when breathed in. Contact can irritate the skin and eyes. Breathing Ferrous Ammonium Sulfate can irritate the nose and throat causing coughing and wheezing. High exposure may cause nausea, stomach pain, diarrhea, vomiting and drowsiness.</li> <li>1,10-Phenanthroline: 1,10-Phenanthroline is absorbed through the skin. Symptoms/effects after inhalation: Slight irritation. Symptoms/effects after</li> </ol> |                            |                        |
| Principle                                                                                                                                                  | skin contact: Slight irritation.  Wine is steam distilled into acidified K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> solution of known volume and concentration. Oxidation of ethyl alcohol to CH <sub>3</sub> COOH is completed by heating. Unreacted dichromate is determined by titration with standard Fe(NH <sub>4</sub> ) <sub>2</sub> (SO <sub>4</sub> ) <sub>2</sub> solution, using o-phenanthroline as indicator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                        |
| Apparatus / Instruments                                                                                                                                    | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>Micro Kjeldahl apparatus with gas micro-burner. Alternatively, Kirk-type electric apparatus may be used. Apparatus must have 3-way stopcock or tee with pinch clamps attached to drain line of still to allow filling of outer chamber with distilled water. Connect electric outlet of still to variable transformer for voltage reduction.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                        |


|                         | (Figure is adopted from FSSAI Manual of Methods of Analysis of Foods: Alcoholic beverages, 2019, Page 10).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Materials and Reagents  | 1. Alcoholic beverages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                         | 2. Potassium dichromate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                         | <ul><li>3. Sulphuric acid</li><li>4. Ferrous ammonium sulfate</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                         | 5. 1,10-Phenanthroline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                         | 6. Ferrous sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Preparation of reagents | <ol> <li>Potassium dichromate solution-Add 325 mL H<sub>2</sub>SO<sub>4</sub> to ca 400 mL H<sub>2</sub>O in 1 L volumetric flask. Mix and cool to 80- 90 °C. Add 33.768 g K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> (primary standard). Dissolve, cool, and dilute to volume with H<sub>2</sub>O at 20 °C.</li> <li>Ferrous ammonium sulfate solution - Dissolve 135.5 g FeSO<sub>4</sub> (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>·6H<sub>2</sub>O in ca 500 mL H<sub>2</sub>O in 1 L volumetric flask. Add 30 mL H<sub>2</sub>SO<sub>4</sub>, Dilute to volume with H<sub>2</sub>O at 20 °C.</li> <li>1,10-Phenanthroline ferrous sulfate indicator -Dissolve 0.695 g FeSO<sub>4</sub>.7H<sub>2</sub>O in ca 50 mL H<sub>2</sub>O, add 1.485 g o-phenanthroline·H<sub>2</sub>O, and dilute to 100 mL with H<sub>2</sub>O.</li> </ol> |  |
| Method of Analysis      | By micro Kjeldahl apparatus  1. To begin distillation, boil H O in steem generator. Open steem tren side tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                         | 1. To begin distillation, boil H <sub>2</sub> O in steam generator. Open steam trap side tube. Turn 3-way stopcock so that steam from trap vents through side tube and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                         | distilling bulb is closed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                         | 2. Place 25 mL K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> solution in 50 mL Erlenmeyer under condenser with tip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                         | below surface of solution, Close stopcock and place small amount H <sub>2</sub> O in funnel. Distilling bulb is empty and micro-burner is not lighted. Transfer 1 mL test portion as follows: Fill 1 mL pipet slightly over mark, and wipe excess wine from exterior. Hold pipet vertical with tip touching inside neck                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                         | of test bottle, drain to mark. Drain pipette completely into funnel. Open stopcock to drain test portion into still then reclose. Add small amount H <sub>2</sub> O to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                         | funnel, drain into still, and rinse with $H_2O$ until distilling bulb is half filled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                         | 3. Place H <sub>2</sub> O in funnel to ensure seal. Close steam trap discharge with pinch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                         | clamp. Open 3-way stopcock, permitting steam to enter bulb while vent is closed. Light micro-burner.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                         | 4. Distil until receiving flask contains ca 40 mL, lower flask, and rinse outside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                         | of condenser outlet into flask with $H_2O$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |



| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Williams, Covernment of India | Gas Chromatography-FID Method of Ethyl Alcohol Estimation using<br>Carbowax (on carbopack support) Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| Method No.                                                                                                                                                | FSSAI 13.005:2021 <b>Revision No. &amp;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>A Date</b> 0.0 |  |
| Scope                                                                                                                                                     | Gas Chromatography/FID method using carbowax (on carbopack support) column for determination of alcoholic content in alcoholic beverages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |  |
| Caution                                                                                                                                                   | 2-Propanol: Non-toxic in contact with skin (LD50 skin> 5000 mg/kg). May cause drowsiness or dizziness. Causes serious eye irritation. Symptoms/effects after inhalation: exposure to high concentrations: coughing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |  |
| Principle                                                                                                                                                 | Ethyl alcohol content is determined by mixing known internal standard and injecting to GC. Peak responses of ethyl alcohol and internal standard are compared and determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |  |
| Apparatus/ Instruments                                                                                                                                    | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>Gas chromatograph - With flame ionization detector, integrator, heated oncolumn injector, and 6 ft (1.8 m) x 2mm id glass column packed with 0.2% Carbowax 1500 on 80-100 mesh Carbopack C.</li> <li>Diluter -Capable of ± 0.1% precision.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                     |                   |  |
| Materials and Reagents                                                                                                                                    | Alcoholic beverages     2. 2-propanol     3. Ethanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |  |
| Preparation of reagents                                                                                                                                   | <ol> <li>Internal standard solution - 0.2% (v/v) 2-propanol in H<sub>2</sub>O.</li> <li>Alcohol standard solution - Prepare Alcohol-H<sub>2</sub>O solution containing approximate % alcohol expected in test portion. Determine exact % alcohol by pycnometer, refractometer, hydrometer or other appropriate AOAC method, or use Standard Reference Material 1590, Stabilized Wine (NIST).</li> </ol>                                                                                                                                                                                                                                                                                                                                |                   |  |
| Method of Analysis                                                                                                                                        | <ol> <li>Dilute alcohol standard solution 1:100 with internal standard solution.</li> <li>Inject at least three 1.0 µL aliquots, after adjusting the air and carrier has flow rates as well as electrometer sensitivity as mentioned below and determine average response ratio of area of alcohol peak to area of 2-propanol peak (RR').</li> <li>Dilute test portion 1:100 with internal standard solution.</li> <li>Inject 1.0 µL, and determine response ratio (RR).</li> <li>Adjust air and H₂ for flame detector to optimum for carrier gas flow of column used. Adjust electrometer sensitivity to provide ≥50,000 counts of integrator count for internal standard peak.</li> <li>Gas chromatograph specifications:</li> </ol> |                   |  |
|                                                                                                                                                           | Carrier gas N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |  |
|                                                                                                                                                           | Flow rate, mL/min Oven temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15<br>105 °C      |  |
|                                                                                                                                                           | Oven temperature 105 °C  Injector temperature 175 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |  |
|                                                                                                                                                           | Detector temperature 175 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |  |
|                                                                                                                                                           | Detector temperature 175°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |  |

| Calculation with units of | Alcohol $\% = (RR \times \% \text{ alcohol in standard}) \div RR'$ |  |  |
|---------------------------|--------------------------------------------------------------------|--|--|
| expression                | RR-Response ratio with known quantities.                           |  |  |
|                           | RR'- Response ratio with test sample                               |  |  |
| Reference                 | AOAC 983.13-1988, Alcohol in wines. Gas chromatographic            |  |  |
|                           | method                                                             |  |  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis               |  |  |

|                                                                                                                                  | Determination of Residue on Evaporation                                              |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
| ISSAT FOOD SAFETY AND STANDARDS                                                                                                  |                                                                                      |  |  |  |
| AUTHORITY OF INDIA  Inspiring Trust, Assuring Safe & Nutritious Food  Ministry of Health and Family Welfare, Government of India |                                                                                      |  |  |  |
| Method No.                                                                                                                       | FSSAI 13.006:2021                                                                    |  |  |  |
| Scope                                                                                                                            | Organic or inorganic solids present in alcoholic beverages are residues. It may      |  |  |  |
| _                                                                                                                                | include high boiling liquids also.                                                   |  |  |  |
| Principle                                                                                                                        | By evaporation of beverages on boiling water bath, residue is determined.            |  |  |  |
| Apparatus / Instruments                                                                                                          | 1. General Glassware and apparatus (Refer 2.0 at page no. 2).                        |  |  |  |
|                                                                                                                                  | 2. Hot Air oven.                                                                     |  |  |  |
|                                                                                                                                  | 3. Water bath.                                                                       |  |  |  |
|                                                                                                                                  | 4. Desiccator.                                                                       |  |  |  |
|                                                                                                                                  | 5. Glass bowl, 250 mL capacity.                                                      |  |  |  |
|                                                                                                                                  | 6. Volumetric flask, 200 mL.                                                         |  |  |  |
| Method of Analysis                                                                                                               | 1. Transfer 200 mL of alcoholic drink into a dried, weighed (W) glass bowl and       |  |  |  |
|                                                                                                                                  | evaporate on a water bath.                                                           |  |  |  |
|                                                                                                                                  | 2. Wipe the external sides of the bowl and keep in an air oven maintained at         |  |  |  |
|                                                                                                                                  | $100 \pm 10$ °C for 2 h.                                                             |  |  |  |
|                                                                                                                                  | 3. Cool in a desiccator and weigh the dish (W1).                                     |  |  |  |
|                                                                                                                                  | 4. Repeat till constant weight is obtained.                                          |  |  |  |
|                                                                                                                                  | 5. Calculate the % residual solids.                                                  |  |  |  |
| Calculation with units of expression                                                                                             | Residue on evaporation $\% \left( \frac{W}{V} \right) = \frac{W1 - W}{V} \times 100$ |  |  |  |
| Capi ession                                                                                                                      | Where, W1 = weight of glass bowl with dry residue, in g                              |  |  |  |
|                                                                                                                                  | W = weight of empty glass bowl, in g                                                 |  |  |  |
|                                                                                                                                  | V = volume of liquor taken for the estimation, in mL                                 |  |  |  |
| Reference                                                                                                                        | 1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test                     |  |  |  |
|                                                                                                                                  | 2. IS Standard – IS 7585:1995, Wines, Methods of Analysis                            |  |  |  |
| Approved by                                                                                                                      | Scientific Panel on Methods of Sampling and Analysis                                 |  |  |  |



| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Waltiers, Covernment of India | Determination of Total Acids (as Tartaric Acid) - Method II (for coloured liquors such as Wine, Toddy)                                                                                                                                                                                                                                                                                                           |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Method No.                                                                                                                                                | FSSAI 13.008:2021                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Scope                                                                                                                                                     | Method II – This method is used to determine total acidity of coloured alcoholic beverages such as Wine, Toddy.                                                                                                                                                                                                                                                                                                  |  |  |  |
| Caution                                                                                                                                                   | Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It can cause severe burns and permanent damage to any tissue that it comes in contact with. Sodium hydroxide can cause hydrolysis of proteins, and hence can cause burns in the eyes which may lead to permanent eye damage.                                                                                                            |  |  |  |
| Principle                                                                                                                                                 | Total acids present in alcoholic beverages are estimated using acid –base titration using pH meter.                                                                                                                                                                                                                                                                                                              |  |  |  |
| Apparatus / Instruments                                                                                                                                   | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>pH Meter.</li> <li>Magnetic stirrer.</li> <li>Beaker 250 mL capacity</li> </ol>                                                                                                                                                                                                                                                     |  |  |  |
| Materials and Reagents                                                                                                                                    | <ol> <li>Alcoholic beverages.</li> <li>Sodium Hydroxide.</li> <li>Buffer solutions of pH 4.0, 7.0 and 9.2</li> </ol>                                                                                                                                                                                                                                                                                             |  |  |  |
| Preparation of reagents                                                                                                                                   | 1. Sodium hydroxide solution (0.05N): Sodium hydroxide (2 g) dissolved in 1 L water.                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Method of analysis                                                                                                                                        | <ol> <li>Calibrate and standardize the pH meter using the buffer solutions of pH 4.0, 7.0 and 9.2.</li> <li>Take approximately 100 mL of distilled water in a beaker and put a magnetic bead and place the beaker on a magnetic stirrer.</li> <li>Carefully immerse the electrode of the pH meter into the water and titrate against standard NaOH solution to pH 8.2. Now add 50 mL of liquor sample</li> </ol> |  |  |  |
|                                                                                                                                                           | to the pH adjusted water and titrate to pH 8.2. Note down the volume of NaOH required (The wine sample may be initially degassed by stirring and heating to 90 °C to remove carbon dioxide).                                                                                                                                                                                                                     |  |  |  |
| Calculation with units of expression                                                                                                                      | Total acidity as tartaric acid(g per liter of wine or toddy) $= (V \times 0.00375 \times 1000) \div V_1$ Where, $V_1 = \text{Volume of wine taken for estimation}$ $V = \text{Volume of std. NaOH used for titration, in mL}$ Note: 1 mL of 0.05N NaOH is equivalent to 0.00375 g of tartaric acid.                                                                                                              |  |  |  |
| Reference                                                                                                                                                 | <ol> <li>IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test</li> <li>IS Standard – IS 7585:1995, Wines, Methods of Analysis</li> </ol>                                                                                                                                                                                                                                                                |  |  |  |
| Approved by                                                                                                                                               | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                                                                                                                                                                                                             |  |  |  |

|                                                                                                                                                          | Determination of Volatile Acids (as Acetic Acid)                                                                                                                                                                                                                                                      |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Covernment of India |                                                                                                                                                                                                                                                                                                       |  |  |  |
| Method No.                                                                                                                                               | FSSAI 13.009:2021 <b>Revision No. &amp; Date</b> 0.0                                                                                                                                                                                                                                                  |  |  |  |
| Scope                                                                                                                                                    | Volatile acids present in alcoholic beverages are estimated using this method. The method is applicable to all alcoholic beverages                                                                                                                                                                    |  |  |  |
| Caution                                                                                                                                                  | Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It can cause severe burns and permanent damage to any tissue that it comes in contact with. Sodium hydroxide can cause hydrolysis of proteins, and hence can cause burns in the eyes which may lead to permanent eye damage. |  |  |  |
| Principle                                                                                                                                                | Alcoholic beverages are distilled and the volatile acids present, in the distillate are estimated.                                                                                                                                                                                                    |  |  |  |
| Apparatus/Instruments                                                                                                                                    | 1. General Glassware and apparatus (Refer 2.0 at page no. 2).                                                                                                                                                                                                                                         |  |  |  |
| Materials and Reagents                                                                                                                                   | <ol> <li>Sodium Hydroxide.</li> <li>Phenolphthalein indicator.</li> <li>Rectified spirit.</li> </ol>                                                                                                                                                                                                  |  |  |  |
| Preparation of reagents                                                                                                                                  | <ol> <li>Sodium hydroxide solution (0.05N): Sodium hydroxide (2 g) dissolved in 1 L water.</li> <li>Phenolphthalein indicator solution - Dissolve 1.0 g of phenolphthalein in 100 mL rectified spirit.</li> </ol>                                                                                     |  |  |  |
| Method of Analysis                                                                                                                                       | <ol> <li>Take 50 mL distillate collected during the determination of ethyl alcohol for volatile acidity determination (FSSAI 13.001:2021).</li> <li>Titrate against standard NaOH using phenolphthalein indicator</li> </ol>                                                                          |  |  |  |
| Calculation with units of expression                                                                                                                     | 1. For liquors: Volatile acidity as acetic acid(g per 100 liters of absolute alcohol) $= (V \times 0.003 \times 100 \times 1000 \times 2) \div V_1$ Where, V = volume of standard NaOH used for titration, in mL $V_1$ = alcohol % by volume                                                          |  |  |  |
|                                                                                                                                                          | 2. For wines: Volatile acidity as acetic acid(g per liter of wine) $= (V \times 0.003 \times 1000) \div V_1$ Where, $V_1$ = Volume of wine taken for estimation $V$ = volume of standard NaOH used for titration, in mL Note: 1 mL of 0.05N NaOH is equivalent to 0.003 g of acetic acid.             |  |  |  |
| Reference                                                                                                                                                | <ol> <li>IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test</li> <li>IS Standard – IS 7585:1995, Wines, Methods of Analysis</li> </ol>                                                                                                                                                     |  |  |  |
| Approved by                                                                                                                                              | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                                                                                                  |  |  |  |

|                                                                                                                                                         | Determination of Total Esters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Meistry of Health and Family Weldare, Covernment of India | Determination of Total Esters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Method No.                                                                                                                                              | FSSAI 13.010:2021 <b>Revision No. &amp; Date</b> 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Scope                                                                                                                                                   | Total esters present in the alcoholic beverages are determined. The method is applicable to all alcoholic beverages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Caution                                                                                                                                                 | <ol> <li>Sulphuric acid: Concentrated sulfuric acid is extremely corrosive and can cause serious burns when not handled properly. This chemical is unique because it not only causes chemical burns, but also secondary thermal burns as a result of dehydration. This dangerous chemical is capable of corroding skin, paper, metals, and even stone in some cases. If sulfuric acid makes direct contact with the eyes, it can cause permanent blindness. If ingested, this chemical may cause internal burns, irreversible organ damage, and possibly death.</li> <li>Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It can cause severe burns and permanent damage to any tissue that it comes in contact with. Sodium hydroxide can cause hydrolysis of proteins, and hence can cause burns in the eyes which may lead to permanent eye damage.</li> </ol> |  |  |  |
| Principle                                                                                                                                               | Esters present in the neutralised alcoholic beverages are hydrolysed and estimated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Apparatus / Instruments                                                                                                                                 | 1. General Glassware and apparatus (Refer 2.0 at page no. 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Materials and Reagents                                                                                                                                  | Alcoholic beverages     Sodium Hydroxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Preparation of reagents                                                                                                                                 | <ol> <li>Sulphuric acid</li> <li>Sodium hydroxide solution (0.1N): Sodium hydroxide (4 g) dissolved in 1 L water.</li> <li>Standard Sulphuric acid, 0.1N: Sulphuric acid (4.9 g) dissolved in 1 L water.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| Method of Analysis                                                                                                                                      | <ol> <li>To the neutralized distillate from the volatile acidity determination (FSSAI 13.009:2021), add 10 mL of std. NaOH and reflux on a steam bath for 1 h.</li> <li>Cool and back titrate the unspent alkali against standard sulphuric acid.</li> <li>Carry out a blank titration simultaneously taking 50 mL of distilled water instead of distillate in the same way.</li> <li>The difference in titer value in milliliters of standard sulphuric acid gives the equivalent ester.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Calculation with units of expression                                                                                                                    | Esters expressed as ethyl acetate(g per 100 liters of abs. alcohol) $= (V \times 0.0088 \times 100 \times 1000 \times 2) \div V_1$ Where, V = difference of titer value of standard $H_2SO_4$ used for blank and sample, in mL $V_1 = \text{alcohol \% by volume.}$ Note: 1 mL of 0.1N NaOH is equivalent to 0.0088 g of Ethyl acetate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Reference                                                                                                                                               | 1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test 2. IS Standard – IS 7585:1995, Wines, Methods of Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Approved by                                                                                                                                             | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Willers, Covernment of India | Determination of Esters - Gas Chromatographic Method using Capillary<br>Column                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method No.                                                                                                                                               | FSSAI 13.011:2021                                                                                                                                                                                                                                                                                                              |
| Scope                                                                                                                                                    | This method is used to determine esters using Gas chromatography equipped with capillary column. The method is applicable to all alcoholic beverages                                                                                                                                                                           |
| Caution                                                                                                                                                  | 1. Methanol: Methanol is highly flammable and toxic. Direct ingestion of more than 10 mL can cause permanent blindness by destruction of the optic nerve, poisoning of the central nervous system, coma and possibly death. These hazards are also true if methanol vapors are inhaled. It is best to avoid direct exposure.   |
|                                                                                                                                                          | 2. Isobutyraldehyde: Breathing Isobutyraldehyde can irritate the lungs causing coughing and/or shortness of breath. Exposure to Isobutyraldehyde can cause headache, nausea and vomiting. High levels can cause to feel dizzy, lightheaded and to pass out. Isobutyraldehyde is a flammable liquid and a fire hazard.          |
|                                                                                                                                                          | 3. Methyl acetate: Methyl Acetate can affect you when breathed in and by passing through your skin. Contact can irritate and burn the eyes with possible permanent damage. Methyl Acetate can irritate the skin and cause itching, redness, rash, drying and cracking. Methyl Acetate is a flammable liquid and a fire hazard. |
|                                                                                                                                                          | 4. n-Propyl acetate: Causes eye, skin, and respiratory tract irritation. Breathing vapors may cause drowsiness and dizziness.                                                                                                                                                                                                  |
|                                                                                                                                                          | 5. t-Amyl alcohol: Ingestion Harmful if swallowed. Skin Harmful if absorbed through skin. Causes skin irritation. Eyes Causes eye irritation.                                                                                                                                                                                  |
|                                                                                                                                                          | 6. n-Butyl acetate: Breathing vapors may cause drowsiness and dizziness. Causes eye and respiratory tract irritation. Repeated exposure may cause skin dryness or cracking. Target Organs: Central nervous system, respiratory system, eyes, skin.                                                                             |
|                                                                                                                                                          | 7. Ethyl propionate: Ethyl propionate can affect when breathed in and may be absorbed through the skin. Contact can irritate and burn the skin and eyes. Breathing Ethyl Propionate can irritate the nose and throat causing coughing and wheezing. High exposure to Ethyl Propionate can cause drowsiness and sleepiness.     |
|                                                                                                                                                          | 8. n-Propanol: Exposure to Propyl alcohol can irritate the eyes, nose, and throat. Exposure to high concentrations can cause headache, drowsiness, dizziness, confusion, nausea and vomiting. Propyl alcohol may cause liver damage. Propyl alcohol is a flammable liquid and a dangerous fire hazard.                         |
|                                                                                                                                                          | 9. Isoutanol: Inhalation of high concentrations of vapors may cause irritation of the respiratory tract with sore throat, coughing, shortness of breath, headaches, nausea, dizziness, dullness, narcosis and unconsciousness.                                                                                                 |
|                                                                                                                                                          | 10. Iso-amyl acetate: Exposure to high concentrations of Isoamyl acetate can cause headache, drowsiness, dizziness, lightheadedness, fatigue, and may cause you to pass out. Prolonged or repeated contact can cause drying and creeking of the skip. Isoamyl acetate is a flammable liquid and a fire heaver                  |
|                                                                                                                                                          | cracking of the skin. Isoamyl acetate is a flammable liquid and a fire hazard.  11. Phenyl acetate: Harmful if swallowed, Exposure: skin – redness; eyesredness, pain.                                                                                                                                                         |
|                                                                                                                                                          | 12. Caprylic acid: Caprylic acid can lower blood pressure. In theory, caprylic acid might cause blood pressure to go too low if used by people prone to low                                                                                                                                                                    |

blood pressure; Caprylic acid is broken down by the liver. There is some concern that people with liver disease might not be able to break down caprylic acid. This might cause blood levels of caprylic acid to increase. 13. n-Butanol: Flammable Liquid, Oral and dermal Toxicity, Acute Toxicity on Inhalation, Skin Corrosion/Irritation, Eye Damage Category, Acute Vertebrate Hazard. 14. Iso-amyl alcohol: Iso-amyl Alcohol can cause nausea, vomiting and diarrhea. Exposure can cause headache, dizziness, lightheadedness, and passing out. cracking of the skin. 15. Ethyl caprylate: Causes eye, skin, and respiratory tract irritation. Combustible liquid and vapor. Target Organs: Respiratory system, eyes, skin. Potential Health Effects. 16. Furfural: Toxic if swallowed; Harmful in contact with skin; Causes skin irritation; Causes serious eye irritation; Toxic if inhaled; May cause respiratory irritation; Respiratory tract irritation; Suspected of causing 17. Ethyl laurate: May irritate eyes, skin, and respiratory tract Alfa Aesar. 18. Phenethyl alcohol: Harmful if absorbed through the skin. Causes eye, skin, and respiratory tract irritation. May be harmful if swallowed. 19. Isovaleric acid: Harmful if swallowed. Toxic in contact with skin. Causes 20. Ethyl caproate: Difficulty in breathing. Symptoms of overexposure may be headache, dizziness, tiredness, nausea and vomiting. 21. Phenethyl acetate: Serious eye damage/eye irritation. 22. Ethyl lactate: Ethyl Lactate can affect you when breathed in and may be absorbed through the skin. Prolonged contact can irritate the skin and eyes. Breathing Ethyl Lactate may cause dizziness, lightheadedness, and passing 23. Acetic acid: Acetic acid can be a hazardous chemical if not used in a safe and appropriate manner. This liquid is highly corrosive to the skin and eyes and, because of this, must be handled with extreme care. Acetic acid can also be damaging to the internal organs if ingested or in the case of vapor inhalation. 24. Isobutyric acid: Isobutyric Acid can affect you when breathed in and may be absorbed through the skin. Contact can irritate and burn the skin and eyes. Breathing Isobutyric Acid can irritate the nose, throat and lungs causing coughing, wheezing and/or shortness of breath. 25. Pelargonic acid: Causes skin irritation. Causes serious eye irritation. 26. Capric acid: Causes skin irritation. May be harmful if absorbed through the skin. Ingestion: May cause gastrointestinal irritation with nausea, vomiting and diarrhea. Inhalation: May cause respiratory tract irritation. Sample peak areas in GC are compared with that of standards and esters are **Principle** determined. **Apparatus/Instruments** 1. General Glassware and apparatus (Refer 2.0 at page no. 2). 2. Gas chromatography -Gas chromatography equipped with flame ionization detector and split injection port and fixed with a capillary column of HP carbowax 20M or equivalent having the dimensions of 25 m length, 0.32 mm ID and 0.30 µm film thickness. 3. **Syringe** – 10  $\mu$ L; Hamilton Co. No. 701, or equivalent.

| Materials and Reagents  |             |                                                                                                                                                               |
|-------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | S. No.      | Reagents                                                                                                                                                      |
|                         | 1           | Internal standard: 0.5% (v/v) n-Pentanol in 40% (v/v) Ethanol                                                                                                 |
|                         |             | (methanol-free)                                                                                                                                               |
|                         | 2           | Ethanol (Methanol-free)                                                                                                                                       |
|                         | 3           | Methanol                                                                                                                                                      |
|                         | 4           | Acetaldehyde                                                                                                                                                  |
|                         | 5           | Isobutyraldehyde                                                                                                                                              |
|                         | 6           | Methyl acetate                                                                                                                                                |
|                         | 7           | Ethyl acetate                                                                                                                                                 |
|                         | 8           | Iso-valeraldehyde                                                                                                                                             |
|                         | 9           | n-propyl acetate                                                                                                                                              |
|                         | 10          | t-Amyl alcohol                                                                                                                                                |
|                         | 11          | n-Butyl acetate                                                                                                                                               |
|                         | 12          | Ethyl propionate                                                                                                                                              |
|                         | 13          | n-Proponol                                                                                                                                                    |
|                         | 14          | Iso-butanol                                                                                                                                                   |
|                         | 15          | Iso-amyl acetate                                                                                                                                              |
|                         | 16          | Phenyl acetate                                                                                                                                                |
|                         | 17          | Caprylic acid                                                                                                                                                 |
|                         | 18          | n-Butanol                                                                                                                                                     |
|                         | 19          | Iso-amyl alcohol                                                                                                                                              |
|                         | 20          | Ethyl caprylate                                                                                                                                               |
|                         | 21          | Furfural                                                                                                                                                      |
|                         | 22          | Ethyl caprate                                                                                                                                                 |
|                         | 23          | Ethyl laurate                                                                                                                                                 |
|                         | 24          | Phenethyl alcohol                                                                                                                                             |
|                         | 25          | Ethyl palmitate                                                                                                                                               |
|                         | 26          | Isovaleric acid                                                                                                                                               |
|                         | 27          | Ethyl caproate                                                                                                                                                |
|                         | 28          | Phenethyl acetate                                                                                                                                             |
|                         | 29          | Ethyl lactate                                                                                                                                                 |
|                         | 30          | Acetic acid                                                                                                                                                   |
|                         | 31          | Isobutyric acid                                                                                                                                               |
|                         | 32          | Ethyl myristate                                                                                                                                               |
|                         | 33          | Pelargonic acid                                                                                                                                               |
|                         | 34          | Capric acid                                                                                                                                                   |
|                         | 35          | Diacetyl                                                                                                                                                      |
| Preparation of reagents | 1. Transfer | on of standard mixture accurately a known quantity of about 5.0 g of reagents listed from ( o different 100 mL volumetric flasks and dilute to 100 mL with 40 |

- flask and dilute to volume with 40% (v/v) ethanol (methanol-free).

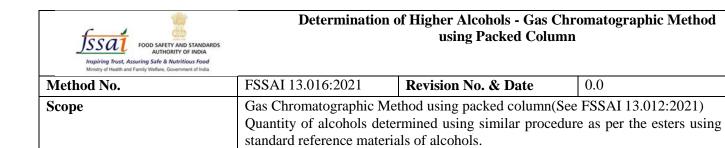
  3. This solution will give approximately 500 ppm of each of component listed above.

# Preparation of working standard mixture

|                           | 4. Transfer 5 mL of standard mixture into a 10 mL stoppered test tube. Add 1                           |  |  |  |
|---------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|
|                           | mL of internal standard solution (1) and mix well.                                                     |  |  |  |
| Sample Preparation        | Transfer 5 mL of sample into a 10 mL stoppered test tube, add 1 mL of n-                               |  |  |  |
|                           | pentanol internal standard solution and mix well.                                                      |  |  |  |
| Method of Analysis        | Gas chromatography and operating parameters.                                                           |  |  |  |
|                           | 1. The split ratio will be approximately 1:40 with nitrogen or helium as a carrier                     |  |  |  |
|                           | gas at the flow rate of about 1.7 mL/min.                                                              |  |  |  |
|                           | 2. The detector and injector port temperatures may be maintained at about 250                          |  |  |  |
|                           | <sup>0</sup> C.                                                                                        |  |  |  |
|                           | 3. Keep the oven temperature at 45 °C for 4 min, raise to 100 °C at the rate of                        |  |  |  |
|                           | 10 °C/min and finally to 200 °C for 10 min at the rate of 15 °C/min.                                   |  |  |  |
|                           | Note:-Optimum operating conditions may vary with column and instrument used                            |  |  |  |
|                           | and must be determined by using standard solutions. Adjust the parameters for                          |  |  |  |
|                           | maximum peak sharpness and optimum separation. With high level standard, n-                            |  |  |  |
|                           | propanol should give almost complete baseline separation from ethanol.                                 |  |  |  |
|                           | 4. Inject 2 μL of working standard mixture solution into chromatograph and                             |  |  |  |
|                           | record the chromatogram.                                                                               |  |  |  |
|                           | 5. Adjust the operating parameters and attenuation to obtain measurable peaks                          |  |  |  |
|                           | (at least 25% of full-scale deflection).                                                               |  |  |  |
|                           | 6. Determine the retention time of methanol and n-pentanol.                                            |  |  |  |
|                           | 7. Inject 2 µL sample solution into chromatograph and record the chromatogram                          |  |  |  |
|                           | (adjust attenuation, if necessary).                                                                    |  |  |  |
|                           | Note: -Identify the individual components by injecting respective component                            |  |  |  |
|                           | standard solutions into the gas chromatograph and record the retention times.                          |  |  |  |
| Calculation with units of | Calculate the individual component in gram per 100 litres of absolute alcohol as                       |  |  |  |
| expression                | follows:                                                                                               |  |  |  |
|                           | Individual component = $(R_2 \times C \times D \times 1000 \times 100 \times 100) \div (R_1 \times S)$ |  |  |  |
|                           | Where,                                                                                                 |  |  |  |
|                           | R <sub>2</sub> - Peak ratio of respective individual component (with respect to standard) to           |  |  |  |
|                           | n-pentanol for sample solution;                                                                        |  |  |  |
|                           | C- Concentration of respective individual component in standard solution, in                           |  |  |  |
|                           | g/mL;                                                                                                  |  |  |  |
|                           | D- Dilution factor for sample solution;                                                                |  |  |  |
|                           | R <sub>1</sub> - Peak ratio of individual component to n-pentanol for standard solution;               |  |  |  |
|                           | S- Ethanol content of liquor sample in percent(v/v).                                                   |  |  |  |
| Reference                 | 1. IS 3752:2005                                                                                        |  |  |  |
|                           | 2. AOAC 968.09-1969, alcohols (higher) and ethyl acetate in distill                                    |  |  |  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                                                   |  |  |  |

| SSA1 FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA                                                              | Determination of Esters - Gas Chromatographic Method using Packed Column                                                                                                                                                                                                                                            |                                                                            |                                                                               |                            |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------|
| Inspiring Trust, Assuring Safe & Nutritious Food<br>Ministry of Health and Family Welfare, Government of India |                                                                                                                                                                                                                                                                                                                     |                                                                            |                                                                               |                            |
| Method No.                                                                                                     | FSSAI 13.01                                                                                                                                                                                                                                                                                                         | 2:2021                                                                     | Revision No. & Date                                                           | 0.0                        |
| Scope                                                                                                          | This method                                                                                                                                                                                                                                                                                                         | l is used to                                                               | determine esters using Gas                                                    | chromatography equipped    |
| •                                                                                                              |                                                                                                                                                                                                                                                                                                                     |                                                                            | method is applicable to all al                                                |                            |
| Caution                                                                                                        | See FSSAI 1                                                                                                                                                                                                                                                                                                         | 3.011:2021                                                                 |                                                                               |                            |
| Principle                                                                                                      | Sample peal                                                                                                                                                                                                                                                                                                         | Sample peak areas in GC are compared with that of standards and esters are |                                                                               |                            |
|                                                                                                                | determined.                                                                                                                                                                                                                                                                                                         |                                                                            |                                                                               |                            |
| Apparatus / Instruments                                                                                        |                                                                                                                                                                                                                                                                                                                     |                                                                            | apparatus (Refer 2.0 at page                                                  |                            |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                     |                                                                            | Gas chromatograph equip                                                       |                            |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                     |                                                                            | et and fixed with a glass                                                     |                            |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                     |                                                                            | bak B, 80/120 mesh or equivalent and based on the second of 2 m in length and |                            |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                     | •                                                                          | ton Co. No. 701, or equivalent                                                |                            |
| Materials and Reagents                                                                                         | S. No.                                                                                                                                                                                                                                                                                                              | μΕ, παππ                                                                   | Reagents                                                                      | nt.                        |
|                                                                                                                | 1                                                                                                                                                                                                                                                                                                                   | Internal sta                                                               | indard:0.5% (v/v) n-Pentano                                                   | ol in 40% (v/v) Ethanol    |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                     | (methanol-                                                                 |                                                                               | ,                          |
|                                                                                                                | 2                                                                                                                                                                                                                                                                                                                   | Ethanol (M                                                                 | ethanol-free)                                                                 |                            |
|                                                                                                                | 3                                                                                                                                                                                                                                                                                                                   | Methanol                                                                   |                                                                               |                            |
|                                                                                                                | 4                                                                                                                                                                                                                                                                                                                   | Acetaldehy                                                                 | de                                                                            |                            |
|                                                                                                                | 5                                                                                                                                                                                                                                                                                                                   | Ethyl aceta                                                                | te                                                                            |                            |
|                                                                                                                | 6                                                                                                                                                                                                                                                                                                                   | n-Propanol                                                                 |                                                                               |                            |
|                                                                                                                | 7 Iso-butanol                                                                                                                                                                                                                                                                                                       |                                                                            |                                                                               |                            |
|                                                                                                                | 8 Iso-amyl acetate                                                                                                                                                                                                                                                                                                  |                                                                            |                                                                               |                            |
|                                                                                                                | 9 Iso-amyl alcohol                                                                                                                                                                                                                                                                                                  |                                                                            |                                                                               |                            |
|                                                                                                                | 10 Ethyl caprylate                                                                                                                                                                                                                                                                                                  |                                                                            |                                                                               |                            |
|                                                                                                                | 11 Furfural 12 Ethyl caprate                                                                                                                                                                                                                                                                                        |                                                                            |                                                                               |                            |
|                                                                                                                | 12 Ethyl caprate 13 Ethyl laurate                                                                                                                                                                                                                                                                                   |                                                                            |                                                                               |                            |
|                                                                                                                | 14                                                                                                                                                                                                                                                                                                                  | Phenethyl a                                                                |                                                                               |                            |
|                                                                                                                | 15                                                                                                                                                                                                                                                                                                                  | Ethyl capor                                                                |                                                                               |                            |
|                                                                                                                | 16                                                                                                                                                                                                                                                                                                                  | Ethyl lactat                                                               |                                                                               |                            |
|                                                                                                                | 17                                                                                                                                                                                                                                                                                                                  | Acetic acid                                                                |                                                                               |                            |
| Preparation of reagents                                                                                        | Preparation                                                                                                                                                                                                                                                                                                         | of standard                                                                | mixture                                                                       |                            |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                     | -                                                                          | own quantity of about 5.0 g                                                   | _                          |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                     | ·                                                                          | ent 100 mL volumetric flasks                                                  | and dilute to 100 mL with  |
|                                                                                                                | <ul> <li>40 percent (v/) ethanol (methanol-free).</li> <li>2. Transfer 1.0 mL of each of the resulting solutions into a 100 mL volumetri flask and dilute to volume with 40% (v/v) ethanol (methanol-free).</li> <li>3. This solution will give approximately 500 ppm of each of component lister above.</li> </ul> |                                                                            |                                                                               |                            |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                     |                                                                            |                                                                               |                            |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                     |                                                                            |                                                                               |                            |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                     |                                                                            |                                                                               |                            |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                     | of working                                                                 | standard mixture                                                              |                            |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                     |                                                                            | d mixture into a 10 mL stor                                                   | opered test tube, add 1 mL |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                     |                                                                            | on (1) and mix well.                                                          | ,                          |
| Sample Preparation                                                                                             | Transfer 5 mL of sample into a 10 mL stoppered test tube, add 1 mL of n-                                                                                                                                                                                                                                            |                                                                            |                                                                               |                            |
|                                                                                                                | pentanol internal standard solution and mix well.                                                                                                                                                                                                                                                                   |                                                                            |                                                                               |                            |

| Method of Analysis        | Gas chromatograph and operating parameters                                                                                                                                                                                           |  |  |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                           | Nitrogen or helium may be used as carrier gas at suitable flow rate.                                                                                                                                                                 |  |  |  |
|                           | The detector and injector port temperatures may be maintained at about 250 °C.                                                                                                                                                       |  |  |  |
|                           | Keep the oven temperature at 45 °C for 4min, raise to 100 °C at the rate of 10 °C                                                                                                                                                    |  |  |  |
|                           | /min and finally to 200 °C for 10 min at the rate of 15 °C/min.                                                                                                                                                                      |  |  |  |
|                           | Note: - Optimum operating conditions may vary with column and instrument used and must be determined by using standard solutions. Adjust the parameters for maximum peak sharpness and optimum separation. With high level standard, |  |  |  |
|                           | n-propanol should give almost complete baseline separation from ethanol.                                                                                                                                                             |  |  |  |
|                           | Inject 2 µL of working standard mixture solution into chromatograph and record the chromatogram.                                                                                                                                     |  |  |  |
|                           | Adjust the operating parameters and attenuation to obtain measurable peaks (at least 25% of full-scale deflection).                                                                                                                  |  |  |  |
|                           | Determine the retention time of methanol and n-pentanol.                                                                                                                                                                             |  |  |  |
|                           | Inject 2 µL sample solution into chromatograph and record the chromatogram (adjust attenuation, if necessary).                                                                                                                       |  |  |  |
|                           | Note: - Identify the individual components by injecting respective components                                                                                                                                                        |  |  |  |
|                           | standard solutions to the gas chromatograph and record the retention times.                                                                                                                                                          |  |  |  |
| Calculation with units of | Calculate the individual component in grams per 100 litres of absolute alcohol as                                                                                                                                                    |  |  |  |
| expression                | follows:                                                                                                                                                                                                                             |  |  |  |
|                           | Individual component = $(R_2 \times C \times D \times 1000 \times 100 \times 100) \div (R_1 \times S)$                                                                                                                               |  |  |  |
|                           | Where,                                                                                                                                                                                                                               |  |  |  |
|                           | R <sub>2</sub> - Peak ratio of respective individual component (with respect to standard) to                                                                                                                                         |  |  |  |
|                           | n-pentanol for sample solution;                                                                                                                                                                                                      |  |  |  |
|                           | C- Concentration of respective individual component in standard solution, in g/mL;                                                                                                                                                   |  |  |  |
|                           | D- Dilution factor for sample solution;                                                                                                                                                                                              |  |  |  |
|                           | R <sub>1</sub> - Peak ratio of individual component to n-pentanol for standard solution; and                                                                                                                                         |  |  |  |
|                           | S- Ethanol content of liquor sample in percent(v/v).                                                                                                                                                                                 |  |  |  |
| Reference                 | 1. IS 3752:2005                                                                                                                                                                                                                      |  |  |  |
|                           | 2.AOAC 968.09                                                                                                                                                                                                                        |  |  |  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                                 |  |  |  |


| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Willers, Covernment of India | Determination of Higher Alcohols - Titrimetric Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Method No.                                                                                                                                               | FSSAI 13.013:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Scope                                                                                                                                                    | Titrimetric method for determination of higher alcohols present in alcoholic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Caution                                                                                                                                                  | <ol> <li>Sulphuric acid: Concentrated sulfuric acid is extremely corrosive and can cause serious burns when not handled properly. This chemical is unique because it not only causes chemical burns, but also secondary thermal burns as a result of dehydration. This dangerous chemical is capable of corroding skin, paper, metals, and even stone in some cases. If sulfuric acid makes direct contact with the eyes, it can cause permanent blindness. If ingested, this chemical may cause internal burns, irreversible organ damage, and possibly death.</li> <li>Potassium dichromate: Corrosive. Causes severe burns to every area of contact. Harmful if swallowed or inhaled. Affects the respiratory system, liver, kidneys, eyes, skin and blood.</li> <li>Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It can cause severe burns and permanent damage to any tissue that it comes in contact with. Sodium hydroxide can cause hydrolysis of proteins, and hence</li> </ol> |  |  |  |
| Principle                                                                                                                                                | can cause burns in the eyes which may lead to permanent eye damage.  Higher alcohols separated by carbon tetrachloride, after saturation with sodium chloride. Higher alcohols fraction is oxidized using oxidation reagent and formed acid is titrated against alkali and estimated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Apparatus / Instruments                                                                                                                                  | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>Separating funnel, 250 mL.</li> <li>Volumetric flask, 1 L capacity.</li> <li>Distillation assembly having Kjeldhal flask, 800 mL capacity; With splash head, Liebig condenser, Receiver of capacity 250 mL.</li> </ol> (Figure is adopted from FSSAI Manual of Methods of Analysis of Foods: Alcoholic beverages, 2019, Page 24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Materials and Reagents                                                                                                                                   | <ol> <li>Sulphuric acid GR grade.</li> <li>Potassium dichromate.</li> <li>Standard NaOH, 0.1N</li> <li>Carbon tetrachloride GR grade, distilled</li> <li>Sodium chloride GR grade</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |

|                           | 6. Sodium sulphate, AR grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | 7. Phenolphthalein indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Preparation of reagents   | <ol> <li>Oxidizing mixture - Dissolve Potassium dichromate, 100 g in 500 mL distilled water and add sulphuric acid, 100 mL and make up to 1 L volume with distilled water.</li> <li>Sodium hydroxide solution (0.1N): Sodium hydroxide (4 g) dissolved in 1 L water.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                           | 3. Phenolphthalein indicator solution - Dissolve 1.0 g of phenolphthalein in 100 mL rectified spirit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Method of Analysis        | <ol> <li>Transfer the solution, obtained from the determination of esters (FSSAI 13.010:2021) into a separatory funnel and add 50 mL of distilled water.</li> <li>Saturate it with sodium chloride and extract four times with successive portions of 40, 30, 20 and 10 mL of carbon tetrachloride.</li> <li>Pool all the extracts and wash 3 times with saturated sodium chloride solution and twice with saturated sodium sulphate solution.</li> <li>Filter the extract and add 50 mL of oxidizing mixture. Reflux for 2 h, cool and wash the reflux with 50 mL of distilled water.</li> <li>Transfer it to the distillation assembly using 50 mL of water. Distil about 100 mL and see that no charring takes place.</li> <li>Titrate the distillate against standard NaOH using phenolphthalein indicator.</li> <li>Run a blank in the same way taking 50 mL of distilled water in place of the</li> </ol> |
| Calculation with units of | distillate of the liquor.  Higher alcohol expressed Amyl alcohol, in grams. Per 100 liters of abs. alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| expression                | $= (V \times 0.0088 \times 100 \times 1000 \times 2) \div (V_1 \times V_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                           | Where, V = difference of titer value of std. alkali used for blank and sample, in mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           | $V_1$ = Volume of sample taken for estimation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                           | $V_2 = $ alcohol % by volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | Note: 1 mL of 0.1N NaOH is equivalent to 0.0088 g of Amyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Reference                 | 1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | 2. IS Standard – IS 7585:1995, Wines, Methods of Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



|                           | higher alcohol per 100 L by diluting 1.0 to 6.0 mL aliquots of alcohol                                                                                                                       |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | standards solution to 100 mL with alcohol solution.                                                                                                                                          |
|                           | (Solution containing 6 mL synthetic standard would give an absorbance of                                                                                                                     |
|                           | 0.83±0.03 at 530 nm).                                                                                                                                                                        |
| Sample Preparation        | 1. Transfer 200 mL of alcoholic drink into a 500 mL distillation flask containing                                                                                                            |
|                           | about 25 mL of distilled water and a few pieces of pumice stone.                                                                                                                             |
|                           | 2. Distil the contents in about 35 min and collect the distillate in a 200 mL volumetric flask till the volume almost reaches the mark.                                                      |
|                           | 3. Bring the distillate to room temperature and make up to volume with distilled water and mix thoroughly.                                                                                   |
|                           | 4. For samples containing 6 g fuel oil per 100 L, dilute the distilled sample with distilled water to concentrations of 2.0 to 5.0 g/100L.                                                   |
| Method of analysis        | 1. Pipette 2 mL of aliquot of sample (or diluted sample), 2 mL of distilled water (for reagent blank) and 2 mL of synthetic standard to each of the test tubes (15mm x 150mm-with stoppers). |
|                           | 2. Stopper and place it in ice-bath in a rack.                                                                                                                                               |
|                           | 3. Pipette 1 mL p-dimethylaminobenzaldehyde solution into each tube; shake and replace in ice-bath for 3 min.                                                                                |
|                           | 4. With tubes retained in ice- bath, add 10 mL sulphuric acid and shake the tubes and replace in ice-bath for 3 min.                                                                         |
|                           | 5. Transfer the rack containing tubes into steam bath for 3 to 5 min. and bring it to room temperature.                                                                                      |
|                           | 6. Read the % T or Absorbance (OD) of developed colour of samples and series of standards in spectrophotometer at 530/535 nm against reagent blank as reference.                             |
|                           | 7. Plot higher alcohol g/100 L Concentrations of Standards Vs. %T or OD.                                                                                                                     |
| Calculation with units of | From the OD of the sample find out the concentration of Higher alcohol g/100L                                                                                                                |
| expression                | using the standard curve.                                                                                                                                                                    |
| Reference                 | 1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test                                                                                                                             |
|                           | 2. IS Standard – IS 7585:1995, Wines, Methods of Analysis                                                                                                                                    |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                         |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Mensity of Health and Farnly Welfare, Covernment of India | Determination of Higher Alcohols - Gas Chromatographic Method using<br>Capillary Column                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Method No.                                                                                                                                              | FSSAI 13.015:2021 <b>Revision No. &amp; Date</b> 0.0                                                                                              |
| Scope                                                                                                                                                   | Gas chromatographic method using capillary column for determination of higher alcohols present in alcoholic beverages.                            |
| Principle                                                                                                                                               | Quantity of alcohols determined using similar procedure as per the esters (See FSSAI 13.011:2021) using standard reference materials of alcohols. |
| Reference                                                                                                                                               | 1. IS 3752:2005                                                                                                                                   |
|                                                                                                                                                         | 2. AOAC 968.09                                                                                                                                    |
| Approved by                                                                                                                                             | Scientific Panel on Methods of Sampling and Analysis                                                                                              |



1. IS 3752:2005

2. AOAC 968.09

Scientific Panel on Methods of Sampling and Analysis

Reference

Approved by



### Determination of Higher Alcohols - Gas Chromatographic Method using Calibration Curves of Standards

| Inspiring Trust, Assuring Safe & Nutritious Fo Ministry of Health and Family Welfare, Government of In | da .                                                                                                                                         |  |  |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Method No.                                                                                             | FSSAI 13.017:2021 Revision No. & Date 0.0                                                                                                    |  |  |
| Scope                                                                                                  | Gas Chromatographic method for determination of higher alcohols present in                                                                   |  |  |
| C                                                                                                      | alcoholic beverages using calibration curves of standards.  1. Isobutyl alcohol: Breathing Isobutyl Alcohol can irritate the nose, mouth and |  |  |
| Caution                                                                                                | 1. Isobutyl alcohol: Breathing Isobutyl Alcohol can irritate the nose, mouth and                                                             |  |  |
|                                                                                                        | throat causing coughing and wheezing. Exposure to Isobutyl Alcohol can                                                                       |  |  |
|                                                                                                        | cause headache, dizziness, drowsiness, confusion and loss of coordination.                                                                   |  |  |
|                                                                                                        | Isobutyl Alcohol may affect the liver. Isobutyl Alcohol is a flammable liquid                                                                |  |  |
|                                                                                                        | and a dangerous fire hazard.                                                                                                                 |  |  |
|                                                                                                        | 2. Isoamyl alcohol: Isoamyl alcohol can cause nausea, vomiting and diarrhea.                                                                 |  |  |
|                                                                                                        | Exposure can cause headache, dizziness, lightheadedness, and passing out.                                                                    |  |  |
|                                                                                                        | Cracking of the skin.                                                                                                                        |  |  |
|                                                                                                        | 3. Propanol: Exposure to propyl alcohol can irritate the eyes, nose, and throat.                                                             |  |  |
|                                                                                                        | Exposure to high concentrations can cause headache, drowsiness, dizziness,                                                                   |  |  |
|                                                                                                        | confusion, nausea and vomiting. Propyl alcohol may cause liver damage.                                                                       |  |  |
|                                                                                                        | Propyl alcohol is a flammable liquid and a dangerous fire hazard. 4. 3-Pentanol: Flammable liquid and vapour. Harmful if swallowed.          |  |  |
|                                                                                                        | 5. Ethyl acetate: Ethyl acetate is highly flammable, as well as toxic when                                                                   |  |  |
|                                                                                                        | ingestion or inhaled, and this chemical can be seriously damaging to internal                                                                |  |  |
|                                                                                                        | organs in the case of repeated or prolonged exposure. Ethyl acetate can also                                                                 |  |  |
|                                                                                                        | cause irritation when it comes into contact with the eyes or skin.                                                                           |  |  |
| Principle                                                                                              | Calibration curves are prepared using GC responses of known concentration of                                                                 |  |  |
| Timcipie                                                                                               | authentic standards. These are used to determine higher alcohols.                                                                            |  |  |
| Apparatus / Instruments                                                                                | 1. General Glassware and apparatus (Refer 2.0 at page no. 2).                                                                                |  |  |
| Apparatus / Instruments                                                                                | 2. Gas chromatograph- Equipped with flame ionization detector.                                                                               |  |  |
|                                                                                                        | 3. Column- 2% glycerol and 2% 1, 2, 6-hexanetriol. Pack 3m (10ft) × 3mm                                                                      |  |  |
|                                                                                                        | (1/8in.) od tube. Condition overnight in 80 °C column oven with the flow rate                                                                |  |  |
|                                                                                                        | of 10-25 mL/min and detector end of column disconnected.                                                                                     |  |  |
| Materials and Reagents                                                                                 | 1. Alcoholic beverages                                                                                                                       |  |  |
| Transcraus ware arengeares                                                                             | 2. Absolute alcohol (ethanol); (Use absolute alcohol throughout when alcohol is                                                              |  |  |
|                                                                                                        | specified)                                                                                                                                   |  |  |
|                                                                                                        | 3. n-Propyl alcohol                                                                                                                          |  |  |
|                                                                                                        | 4. Isobutyl alcohol                                                                                                                          |  |  |
|                                                                                                        | 5. Amyl alcohol                                                                                                                              |  |  |
|                                                                                                        | 6. 3-Pentanol                                                                                                                                |  |  |
|                                                                                                        | 7. Ethyl acetate                                                                                                                             |  |  |
| Preparation of reagents                                                                                | 1. Amyl alcohol - Mixture of active-amyl and isoamyl alcohols, ca 22 and 78%,                                                                |  |  |
|                                                                                                        | respectively, concentration composition of reagent. Measure areas of 2 peaks                                                                 |  |  |
|                                                                                                        | by triangulation (height $\times$ width at half height), and obtain concentration of                                                         |  |  |
|                                                                                                        | each by dividing area of each peak by sum of both peak areas.                                                                                |  |  |
|                                                                                                        | 2. 3-Pentanol internal standard solution- 40.76 mg/mL. Prepare solution                                                                      |  |  |
|                                                                                                        | containing 10 mL reagent in 200 mL Alcohol-H <sub>2</sub> O (1+1)                                                                            |  |  |
|                                                                                                        | 3. n-Propyl alcohol, Isobutyl alcohol, and Amyl alcohol standard solutions-                                                                  |  |  |
|                                                                                                        | Prepare 3 or 4 standard solutions containing varying amounts alcohols as                                                                     |  |  |
|                                                                                                        | follows: Into tared 100 mL volumetric flasks containing alcohol- H <sub>2</sub> O (1+),                                                      |  |  |
|                                                                                                        | pipet fusel alcohols and weigh after addition of each component. Proportions                                                                 |  |  |
|                                                                                                        | of fusel alcohols in each standard solution should vary so that desired                                                                      |  |  |

|                           | concentration range of each is represented in random manner in series of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | standard solutions. Suggested amounts: $0.25-1.5$ mL n-propanol, $1.0-2.5$ mL isobutyl alcohol, and $2.0-5.0$ mL amyl alcohol. Dilute each volume with alcohol- $H_2O(1+1)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                           | 4. n-Propyl alcohol, isobutyl alcohol, and amyl alcohol working standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                           | solution- Dilute 10 mL each standard solution and 2.0 mL 3-pentanol internal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                           | standard solution to 200 mL with alcohol- H <sub>2</sub> O (1+1) (1:20 dilution).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           | 5. Ethyl acetate standard solutions- Prepare 3 or 4 standard solutions containing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           | 0-0.5 g/L (0-50 g/100L) in water or alcohol- $H_2O$ (1+1). Use for preparing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                           | direct standard curve by plotting peak height (mm) against concentration in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | g/100 L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Method of Analysis        | Approximate parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                           | 1. Column, injector and detector temperatures ( $^{0}$ C)—80, 100, and 125, respectively; gas flows (mL/min) - He carrier and H 25, air 250-400; attenuation 64×.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                           | 2. Optimum operating conditions vary with column and instrument and must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | determined by using standard solutions. Adjust parameters for maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                           | peak sharpness and optimum separation. Analysis is complete in Ca 11 min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           | Determination 3. Pipet 10 mL test portion into convenient vessel (e.g, 1oz French square glass)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           | bottle with screw cap), add, by pipet (0.2 mL pipet graduated in 0.01 mL), 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                           | mL 3-pentanol internal standard solution, and mix.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | 4. Inject 2 μL test portion and working standard solutions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | 5. Measure peak height of each component in working standard solutions and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                           | calculate peak height ratio of each to internal standard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           | 6. Calculate concentration ratio of each by dividing weight of component by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | that of internal standard. (Proportion of active-amyl and isoamyl alcohols in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                           | mixture must be taken into consideration in calculations of actual weights of each isomer in working standard solutions.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           | 7. Plot concentration ratios (horizontal axis) against peak height ratios (vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           | axis) for each higher alcohol in all working standards to obtain family of curves.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                           | 8. For ethyl acetate, plot peak height directly against concentration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                           | 9. Similarly, measure peak height of each component on test portion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                           | chromatogram and calculate peak height ratios.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                           | 10. Read concentration ratios of all alcohols, using proper standard curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Calculation with units of | Multiply concentration ratio of each fusel alcohol in test portion by 40.76 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| expression                | obtain g/100L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                           | New standard curves need be prepared only when new instruments, parameters, or standards are used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reference                 | 1. IS 3752:2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MC161 CHCC                | 2. AOAC 968.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <u>r</u>                  | The state of the s |



#### **Determination of Aldehydes - Titrimetric Method**

| Inspiring Trust, Assuring Safe & Nutritious Food<br>Ministry of Health and Family Welfare, Government of India |                                                                                                                                                                 |  |  |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Method No.                                                                                                     | FSSAI 13.018:2021 <b>Revision No. &amp; Date</b> 0.0                                                                                                            |  |  |
| Scope                                                                                                          | Titrimetric method for determination of aldehydes present in alcoholic                                                                                          |  |  |
|                                                                                                                | beverages.                                                                                                                                                      |  |  |
| Caution                                                                                                        | 1. Sodium bisulphate: Harmful if swallowed. Contact with acids liberates toxic                                                                                  |  |  |
|                                                                                                                | gas.                                                                                                                                                            |  |  |
|                                                                                                                | 2. Sodium thiosulphate: Sodium thiosulphate is moderately toxic when ingested.                                                                                  |  |  |
|                                                                                                                | Remove contaminated clothing and wash the affected area on the skin with                                                                                        |  |  |
|                                                                                                                | soap or mild detergent and large amounts of water until all evidence of the                                                                                     |  |  |
|                                                                                                                | chemical has been removed (approximately 15 min). Wash contaminated                                                                                             |  |  |
| D                                                                                                              | clothing before reuse.                                                                                                                                          |  |  |
| Principle                                                                                                      | Aldehydes react with sodium bisulphite and forms adducts. These adducts react                                                                                   |  |  |
|                                                                                                                | with iodine. Excess iodine is titrated and determined. Consumed iodine is correlated with aldehyde content and determined                                       |  |  |
| Apparatus / Instruments                                                                                        | General Glassware and apparatus (Refer 2.0 at page no. 2).                                                                                                      |  |  |
| Apparatus / Histruments                                                                                        | 2. Iodine flask, 250 mL capacity.                                                                                                                               |  |  |
|                                                                                                                | 3. Burette, 25/50 mL capacity.                                                                                                                                  |  |  |
| Materials and Reagents                                                                                         | Sodium bisulphite solution.                                                                                                                                     |  |  |
| Transcrams water arougones                                                                                     | 2. Iodine standard solution.                                                                                                                                    |  |  |
|                                                                                                                | 3. Sodium thiosulphate standard.                                                                                                                                |  |  |
|                                                                                                                | 4. Starch indicator.                                                                                                                                            |  |  |
| Preparation of reagents                                                                                        | 1. Sodium bisulphite solution (0.05N) – Sodium bisulphite (2.6 g) dissolved in                                                                                  |  |  |
|                                                                                                                | 1000 mL water.                                                                                                                                                  |  |  |
|                                                                                                                | 2. Iodine standard solution – 0.05N.                                                                                                                            |  |  |
|                                                                                                                | 3. Sodium thiosulphate standard (0.05N) – Sodium thiosulphate (12.4 g)                                                                                          |  |  |
|                                                                                                                | dissolved in 1000 mL water.                                                                                                                                     |  |  |
|                                                                                                                | 4. Starch indicator (1%) – starch (1 g) is dissolved in 100 mL water.                                                                                           |  |  |
| Method of Analysis                                                                                             | 1. Take 50 mL of distillate of liquor (FSSAI 13.001:2021) in a 250 mL Iodine                                                                                    |  |  |
|                                                                                                                | flask and add 10 mL of bisulphite solution. Keep the flask in a dark place for                                                                                  |  |  |
|                                                                                                                | 30 min. with occasional shaking.                                                                                                                                |  |  |
|                                                                                                                | 2. Add 25 mL of standard iodine solution and back titrate excess iodine against standard thiosulphate solution using starch indicator to light green end point. |  |  |
|                                                                                                                | 3. Run a blank taking 50 mL of distilled water in the same way.                                                                                                 |  |  |
|                                                                                                                | 4. The difference in titer value in milliliters, of sodium thiosulphate solution                                                                                |  |  |
|                                                                                                                | gives the equivalent aldehyde content.                                                                                                                          |  |  |
| Calculation with units of                                                                                      | Aldehydes expressed acetaldehyde (g per 100 liters of absolute alcohol)                                                                                         |  |  |
| expression                                                                                                     | $= (V \times 0.0011 \times 100 \times 1000 \times 2) \div V_1$                                                                                                  |  |  |
| P                                                                                                              |                                                                                                                                                                 |  |  |
|                                                                                                                | Where, $V_1$ = alcohol % by volume                                                                                                                              |  |  |
|                                                                                                                | V = difference in titer of blank and sample, in mL of                                                                                                           |  |  |
|                                                                                                                | sodium thiosulphate solution                                                                                                                                    |  |  |
|                                                                                                                | <b>Note:</b> 1 mL. of 0.05N sodium thiosulphate is equivalent to 0.0011 g of                                                                                    |  |  |
|                                                                                                                | Acetaldehyde.                                                                                                                                                   |  |  |
| Reference                                                                                                      | 1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test                                                                                                |  |  |
|                                                                                                                | 2. IS Standard – IS 7585:1995, Wines, Methods of Analysis                                                                                                       |  |  |
| Approved by                                                                                                    | Scientific Panel on Methods of Sampling and Analysis                                                                                                            |  |  |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfam, Covernment of India | Determination of Aldehydes – Gas Chromatographic Method using<br>Capillary Column |                                |                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------|----------------------------|
| Method No.                                                                                                                                              | FSSAI 13.019:2021                                                                 | Revision No. & Date            | 0.0                        |
| Scope                                                                                                                                                   | Gas chromatographic method using capillary column (See FSSAI 13.011:2021)         |                                |                            |
|                                                                                                                                                         | Quantity of aldehydes det                                                         | termined using similar procedu | re as per the esters using |
|                                                                                                                                                         | standard reference materi                                                         | als of aldehydes.              |                            |
| Reference                                                                                                                                               | 1. IS 3752:2005                                                                   |                                |                            |
|                                                                                                                                                         | 2. AOAC 968.09                                                                    |                                |                            |
| Approved by                                                                                                                                             | Scientific Panel on Metho                                                         | ods of Sampling and Analysis   |                            |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Mensity of Health and Fannly Wolfate, Covenment of India | Determination of Aldehydes - Gas Chromatographic Method using Packed Column                                                                              |                              |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------|
| Method No.                                                                                                                                             | FSSAI 13.020:2021                                                                                                                                        | Revision No. & Date          | 0.0                         |
| Scope                                                                                                                                                  | Gas Chromatographic Method using packed column (See FSSAI 13.012:2021)  Quantity of aldehydes determined using similar procedure as per the esters using |                              |                             |
|                                                                                                                                                        | standard reference materi                                                                                                                                | <u> </u>                     | are as per the esters using |
| Reference                                                                                                                                              | 1. IS 3752:2005                                                                                                                                          |                              |                             |
|                                                                                                                                                        | 2. AOAC 968.09                                                                                                                                           |                              |                             |
| Approved by                                                                                                                                            | Scientific Panel on Metho                                                                                                                                | ods of Sampling and Analysis | ·                           |

#### **Determination of Furfural - Colorimetric Method** uring Safe & Nutritious Food Method No. FSSAI 13.021:2021 **Revision No. & Date** 0.0 Colorimetric Method for determination of furfural present in alcoholic Scope beverages. Caution 1. Hydrochloric acid: Hydrochloric acid is a hazardous liquid which must be used with care. The acid itself is corrosive, and concentrated forms release acidic mists that are also dangerous. If the acid or mist come into contact with the skin, eyes, or internal organs, the damage can be irreversible or even fatal in severe cases. 2. Aniline: Aniline vapor is heavier than air and may accumulate in low-lying areas. The vapor is combustible. Aniline has a characteristic aromatic or fishy odor which provides adequate warning of acute exposure. Aniline is rapidly absorbed after inhalation and ingestion. 3. Furfural: Toxic if swallowed; Harmful in contact with skin; Causes skin irritation; Causes serious eye irritation; Toxic if inhaled; May cause respiratory irritation; Respiratory tract irritation; Suspected of causing cancer. 4. m-Phenylenediamine hydrochloride: Causes serious eye irritation Furfural reacts with aniline in presence of hydrochloric acid and develops **Principle** colour. Developed colours of alcohols with known quantity of furfural and unknown quantity of furfural are compared using Nessler comparator. **Apparatus / Instruments** 1. General Glassware and apparatus (Refer 2.0 at page no. 2). 2. Nessler tubes with flat bottom tubes of thin high quality glass, 25 mm in diameter and 150 mm in length and graduated at 50mL. 1. Alcoholic beverages. **Materials and Reagents** 2. Aniline, (distilled and colourless). 3. Hydrochloric acid, sp. gr. 1.125. 4. Furfural. 5. m-Phenylenediamine hydrochloride **Preparation of reagents** Furfural free alcohol 1. Let alcohol containing 5 g of m-phenylenediamine hydrochloride per litre, stand at least for 24 h with frequent shaking (previous treatment with potassium hydroxide is not necessary). Reflux for at least 8 h, longer if necessary.

# of the distillate. If this gives coloration with aniline hydrochloride, repeat the treatment. Standard furfural solution 3. Dissolve 1 g of redistilled, colourless furfural in 100 mL of the furfural free alcohol.

4. Prepare standard furfural solution by diluting 1 mL of this solution to 100 mL with 50% furfural free alcohol.

2. Let stand overnight and distill, rejecting the first 100 mL and the last 200 mL

5. One mL of this diluted solution contains 0.1 mg of furfural (strong furfural solution shall retain its strength but the diluted standard solution should be prepared afresh every time).

# Method of Analysis 1. Take 5 mL of the distillate obtained for ethanol determination, (FSSAI 13.001:2021), add 1 mL of the colourless aniline and 0.5 mL of the hydrochloric acid, and keep for 15 min. Red colour indicates the presence of

|                           | furfural. Proceed for quantitative estimation if colour develops.                 |  |  |
|---------------------------|-----------------------------------------------------------------------------------|--|--|
|                           | 2. Dilute a measured portion of the distillate with 50% furfural free alcohol to  |  |  |
|                           | 50 mL.                                                                            |  |  |
|                           | 3. First add 2 mL of the colourless aniline and then 0.5 mL of hydrochloric acid. |  |  |
|                           | 4. Mix and keep at 15 °C for 15 min.                                              |  |  |
|                           | 5. Compare the colour developed with standard furfural solution by using a        |  |  |
|                           | Nessler comparator.                                                               |  |  |
| Calculation with units of | Furfural (g per 100 liters of absolute alcohol)                                   |  |  |
| expression                | $= (W \times 1000 \times 100 \times 100) \div (V_1 \times V_2)$                   |  |  |
|                           | Where, W = is the weight in grams of the furfural present in volume               |  |  |
|                           | used for matching the experimental solution;                                      |  |  |
|                           | $V_1$ = volume of experimental solution used for estimation; and                  |  |  |
|                           | $V_2$ = alcohol, % by volume                                                      |  |  |
| Reference                 | 1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test                  |  |  |
|                           | 2. IS Standard – IS 7585:1995, Wines, Methods of Analysis                         |  |  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                              |  |  |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA  Inspiring Trust, Assuring Safe & Nutritious Food  Ministry of Health and Family Wellare, Government of India | <b>Determination</b> (            | of Furfural - Gas Chromatog                         | raphic Method         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------|-----------------------|
| Method No.                                                                                                                                                 | FSSAI 13.022:2021                 | Revision No. & Date                                 | 0.0                   |
| Scope                                                                                                                                                      |                                   | ral by Gas Chromatograph<br>(See FSSAI 13.011:2021) | ny as described under |
| Reference                                                                                                                                                  | 1. IS 3752:2005<br>2. AOAC 968.09 |                                                     |                       |
| Approved by                                                                                                                                                | Scientific Panel on Metho         | ds of Sampling and Analysis                         |                       |



## Determination of Copper / Iron - Atomic Absorption Spectrophotometric (AAS) Method

| Method No.                     | FSSAI 13.023:2021 <b>Revision No. &amp; Date</b> 0.0                                                                           |  |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| Scope                          | Atomic absorption Spectrophotometric (AAS) method for determination of                                                         |  |  |
|                                | Copper / Iron present in alcoholic beverages.                                                                                  |  |  |
| Caution                        | 1. Acetylene: Acetylene combines with air or oxygen to form an explosive                                                       |  |  |
|                                | mixture that can be ignited by a spark or the like, and can cause a serious                                                    |  |  |
|                                | Explosion.                                                                                                                     |  |  |
|                                | 2. Nitric acid: May be fatal if inhaled. Causes severe eye and skin burns. Causes                                              |  |  |
|                                | severe respiratory and digestive tract burns. Strong oxidizer. Contact with                                                    |  |  |
|                                | other material may cause a fire. Acute pulmonary edema or chronic                                                              |  |  |
|                                | obstructive lung disease may occur from inhalation of the vapors of nitric                                                     |  |  |
|                                | acid. Corrosive to metal. Target Organs: Lungs, eyes, skin, mucous                                                             |  |  |
|                                | membranes.                                                                                                                     |  |  |
| Principle                      | Liquor (clear) samples / digested samples are aspirated into AAS flame and                                                     |  |  |
|                                | absorbance are measured for Copper / Iron and compared with absorbance of                                                      |  |  |
|                                | SRMs.                                                                                                                          |  |  |
| <b>Apparatus / Instruments</b> | 1. General Glassware and apparatus (Refer 2.0 at page no. 2).                                                                  |  |  |
|                                | 2. Atomic absorption Spectrophotometer (AAS) – Double beam.                                                                    |  |  |
|                                | 3. Hollow Cathode Lamp –Copper.                                                                                                |  |  |
|                                | 4. Microwave Digester with Quartz tubes for digestion.                                                                         |  |  |
|                                | 5. Muffle furnace.                                                                                                             |  |  |
|                                | 6. Fume Hood.                                                                                                                  |  |  |
|                                | 7. Steam bath.                                                                                                                 |  |  |
|                                | 8. Silica crucible.                                                                                                            |  |  |
| Materials and Reagents         | 1. Alcoholic beverages.                                                                                                        |  |  |
|                                | 2. Acetylene Ultra-pure grade.                                                                                                 |  |  |
|                                | 3. Nitrogen – Ultra pure grade.                                                                                                |  |  |
|                                | 4. Water – triple distilled or Milli-Q /18 $\Omega$ .                                                                          |  |  |
|                                | 5. Copper SRM and Iron SRM (100 μg/mL) traceable to NIST.                                                                      |  |  |
|                                | 6. Alcohol- distilled                                                                                                          |  |  |
| Preparation of reagents        | Preparation of Cu / Fe working standard solutions:                                                                             |  |  |
|                                | 1. Take suitable aliquots from Copper / Iron SRM to prepare 0.25, 0.50 and 1.00                                                |  |  |
| 35.13.3.0.4.3.4                | μg/mL Cu/Fe solutions and make up to known volume with 1N HNO <sub>3</sub> .                                                   |  |  |
| Method of Analysis             | 1. Follow operating instructions of manufacturer for the selection of optimum                                                  |  |  |
|                                | gas flow, wavelength settings and beam alignment.                                                                              |  |  |
|                                | 2. In case of clear samples direct injection of the liquor sample filtered                                                     |  |  |
|                                | through 0.45 µm to AAS may be done to determine the quantity of copper                                                         |  |  |
| present in the sample.         |                                                                                                                                |  |  |
|                                | 3. In case of samples having high residues, it is not advisable to inject 0.45                                                 |  |  |
|                                | μm Millipore-filtered sample, since clogging of the AAS burner head is encountered. Hence wet ashing is preferred.             |  |  |
|                                |                                                                                                                                |  |  |
|                                | Preparation of Ash solution:  4. Wot Ashing Take 50 to 100 mL of wine sample in a gless bowl and                               |  |  |
|                                | 4. Wet Ashing - Take 50 to 100 mL of wine sample in a glass bowl and                                                           |  |  |
|                                | evaporate to dryness.  5 Add 5 mL of ultra pure pitric acid and transfer to the quartz tube of                                 |  |  |
|                                | 5. Add 5 mL of ultra-pure nitric acid and transfer to the quartz tube of                                                       |  |  |
|                                | microwave digester using little distilled water.  6. Prossure Digest the solution in microwave digestion appearatus for 30 min |  |  |
|                                | 6. Pressure Digest the solution in microwave digestion apparatus for 30 min.                                                   |  |  |

|                           | 7. Cool and make up to 25 mL volume.                                                |  |  |
|---------------------------|-------------------------------------------------------------------------------------|--|--|
|                           | 8. Blank Solution - Prepare a blank by taking 5 mL of ultrapure nitric acid and     |  |  |
|                           | make up to 25 mL volume.                                                            |  |  |
|                           | Determination                                                                       |  |  |
|                           | 9. Aspirate the blank into the AAS flame and set the instrument for zero            |  |  |
|                           | absorbance.                                                                         |  |  |
|                           | 10. Aspirate the Cu/Fe Std. solutions sequentially for absorbance data acquisition. |  |  |
|                           | 11. Now aspirate a) the liquor sample directly or b) nitric acid digested wine      |  |  |
|                           | sample solution into AAS flame to record the absorbance and in turn note            |  |  |
|                           | down the displayed concentration of Cu/Fe in µg.                                    |  |  |
|                           | 12. Calculate the concentration in the test sample involving the dilutions made.    |  |  |
| Calculation with units of | Copper / Iron content in wine (in µg/mL or mg/L)                                    |  |  |
| expression                | [Reading (in µg)displayed × Dilution]                                               |  |  |
|                           | Volume of sample                                                                    |  |  |
|                           | Note: For directly aspirated liquor sample, dilution part will not appear in the    |  |  |
|                           | calculation                                                                         |  |  |
| Reference                 | 1. A.O.A.C 17 <sup>th</sup> edn, 2000 Official Method 999.11 Determination of Lead, |  |  |
|                           | Cadmium, Copper, Iron and Zinc in Foods Atomic Absorption                           |  |  |
|                           | Spectrophotometry after dry ashing.                                                 |  |  |
|                           | 2. For Detailed Metal Estimation Procedure - Refer Manual of Methods for            |  |  |
|                           | Analysis of Metals, FSSAI.                                                          |  |  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                                |  |  |
|                           |                                                                                     |  |  |



#### **Determination of Copper using Diethyldithiocarbamate**

| Method No. | FSSAI 13.024:2021 <b>Revision No. &amp; Date</b> 0.0                               |
|------------|------------------------------------------------------------------------------------|
| Scope      | Two methods, namely, diethyldithiocarbamate method and potassium                   |
|            | ferrocyanide method are employed.                                                  |
|            | The potassium ferrocyanide method is easier to perform and sufficiently            |
|            | sensitive and accurate for routine type of analysis. The diethyldithiocarbamate    |
|            | method is more sensitive and shall serve as a referee method in case of dispute or |
|            | where zinc is present.                                                             |
| Caution    | 1. Sulphuric acid: Concentrated sulfuric acid is extremely corrosive and car       |
|            | cause serious burns when not handled properly. This chemical is unique             |
|            | because it not only causes chemical burns, but also secondary thermal burns        |
|            | as a result of dehydration. This dangerous chemical is capable of corroding        |
|            | skin, paper, metals, and even stone in some cases. If sulfuric acid makes          |
|            | direct contact with the eyes, it can cause permanent blindness. If ingested        |
|            | this chemical may cause internal burns, irreversible organ damage, and             |
|            | possibly death.                                                                    |
|            | 2. Hydrochloric acid: It is a hazardous liquid which must be used with care        |
|            | The acid itself is corrosive, and concentrated forms release acidic mists that     |
|            | are also dangerous. If the acid or mist come into contact with the skin, eyes      |
|            | or internal organs, the damage can be irreversible or even fatal in severe         |
|            | cases.                                                                             |
|            | 3. Ammonia solution: Contact with concentrated ammonia solutions may cause         |
|            | corrosive injury including skin burns, permanent eye damage or blindness           |
|            | The full extent of eye injury may not be apparent for up to a week after the       |
|            | exposure. Contact with liquefied ammonia can also cause frostbite injury.          |
|            | 4. Nitric acid: May be fatal if inhaled. Causes severe eye and skin burns. Causes  |
|            | severe respiratory and digestive tract burns. Strong oxidizer. Contact with        |
|            | other material may cause a fire. Acute pulmonary edema or chronic                  |
|            | obstructive lung disease may occur from inhalation of the vapors of nitric         |
|            | acid. Corrosive to metal. Target Organs: Lungs, eyes, skin, mucous membranes.      |
|            | 5. Citric acid: Ingestion May irritate and cause stomach pain, vomiting and        |
|            | diarrhoea. Skin contact Skin irritation is not anticipated when used normally      |
|            | Eye contact Causes serious eye irritation. Particles in the eyes may cause         |
|            | irritation and smarting.                                                           |
|            | 6. Copper sulphate: Copper sulfate can cause severe eye irritation. Eating large   |
|            | amounts of copper sulfate can lead to nausea, vomiting, and damage to body         |
|            | tissues, blood cells, the liver, and kidneys.                                      |
|            | 7. Sodium diethyldithiocarbamate: Harmful if swallowed or inhaled. Cause           |
|            | irritation to skin, eyes, and respiratory tract.                                   |
|            | 8. Carbon tetrachloride: Carbon tetrachloride can cause nausea, vomiting           |
|            | diarrhea and abdominal pain. Carbon tetrachloride can damage the liver and         |
|            | kidneys.                                                                           |
|            | 9. Acetic acid: Acetic acid can be a hazardous chemical if not used in a safe and  |
|            | appropriate manner. This liquid is highly corrosive to the skin and eyes and       |
|            | because of this, must be handled with extreme care. Acetic acid can also be        |
|            | damaging to the internal organs if ingested or in the case of vapor inhalation.    |
|            | damaging to the internal organs if ingested of in the case of vapor limitation.    |

| Principle               | 1. In the presence of copper, an aqueous solution of Sodium (or Zinc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Timespie                | diethyldithiocarbamate gives a golden brown colour in acid or ammoniacal or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | neutral solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | 2. The diethyldithiocarbamate method has advantages over the ferrocyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         | method, which is in vogue in some laboratories since it is more sensitive and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | is free from interference by iron and zinc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | 3. This method is suitable when the copper content ranges from 0.01 to 0.15 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | of copper in the quantity of the material taken.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         | 4. With larger quantities of copper, the mixture of the test solution and reagent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | rapidly becomes cloudy and any observance of this in the prescribed test is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | sufficient for condemning the sample as containing excessive quantities of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | copper.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                         | 5. If a quantitative determination is required, the test should be repeated by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | using proportionately smaller quantities of sample for test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Apparatus / Instruments | 1. General Glassware and apparatus (Refer 2.0 at page no. 2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | 2. Nessler tubes - Flat bottom tubes of thin, colourless glass, about 25 mm in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | diameter and about 150 mm in length and graduated at 50 mL. The depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         | measured internally from graduation mark to the bottom shall not vary by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Materials and Reagents  | more than 2 mm in the tubes used for the test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Waterials and Reagents  | <ol> <li>Alcoholic beverages.</li> <li>Concentrated Sulphuric acid.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         | 3. Concentrated nitric acid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         | 4. Concentrated hydrochloric acid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 5. Citric acid, AR grade.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         | 6. Ammonium Hydroxide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | 7. Copper sulphate (CuSo <sub>4</sub> .5H <sub>2</sub> O).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | 8. Sodium diethyldithiocarbamate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | 9. Carbon tetrachloride, AR grade.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 10. Acetic acid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Preparation of reagents | 1. Dilute sulphuric acid, approximately 10% (v/v).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 2. Aqua regia, a mixture of one volume of concentrated nitric acid, and three                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | volumes of concentrated hydrochloric acid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | 3. Standard copper solution – Dissolve 1.119 g of copper sulphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | (CuSo <sub>4</sub> .5H <sub>2</sub> O) in water and dilute to one litre. Dilute 10 mL of this solution to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         | 100 mL. One millilitre of the diluted solution contains 0.028545 mg of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         | copper. The diluted solution shall always be prepared immediately before use.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | 4. Sodium diethyldithiocarbamate- Prepare 0.1% by weight solution of sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | diethyldithiocarbamate in water. Sometimes diethyldithiocarbamate available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | may not be completely soluble in water, in which case the insoluble material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         | may be removed by filtration through an ashless filter paper. The reagent is best prepared just for use, but may stand for one or two weeks in amber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | coloured bottle without appreciable deterioration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | 5. Acetic acid, approximately 5% by weight.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sample Preparation      | 1. Transfer 20 mL of the material into silica evaporating dish and add 1 mL of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ~p 1 oput union         | dilute sulphuric acid. Heat gently in the beginning and then evaporate almost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | to dryness on a water-bath.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | 2. Ignite the residue over a smokeless flame to eliminate sulphuric acid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         | 3. Cool, dissolve the residue in 2 mL of water, add three drops of aqua regia and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         | evaporate to dryness on a water bath.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         | 4. Dissolve the residue in water, neutralize, if required, with dilute ammonium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | in a second to the second to t |

|                           | hydroxide and make up the volume to 25 mL.                                        |  |  |
|---------------------------|-----------------------------------------------------------------------------------|--|--|
| Method of Analysis        | 1. To detect copper contamination, if any, in any of the reagents, blank          |  |  |
|                           | experiment shall be carried out using the same quantities of the reagents.        |  |  |
|                           | 2. There are two variations of the method                                         |  |  |
|                           | (a) Without extraction, and (b) With extraction.                                  |  |  |
|                           | (a) Procedure (without extraction)                                                |  |  |
|                           | 3. Take in 50 mL Nessler tube, 10 mL of the test solution prepared as             |  |  |
|                           | described above.                                                                  |  |  |
|                           | 4. Add 2 g of citric acid and 10 mL of dilute ammonium hydroxide. Make up         |  |  |
|                           | to 50 mL with water.                                                              |  |  |
|                           | 5. Prepare a series of control solutions, each containing in 50 mL, 2 g of citric |  |  |
|                           | acid and 10 mL of dilute ammonium hydroxide together with an increasing           |  |  |
|                           | amount of copper, namely, 0.1 mL, 0.2 mL, 0.4 mL, 0.6 mL, 0.8 mL and              |  |  |
|                           | 1.0 mL of standard copper solution.                                               |  |  |
|                           | 6. The test solution and controls should be free from any turbidity.              |  |  |
|                           | 7. Cool all solution to 20 °C, add 2 mL of diethyldithiocarbamate solution to     |  |  |
|                           | each and match the test solution against the control solution.                    |  |  |
|                           | 8. Note the number of millilitres of standard copper solution added in the        |  |  |
|                           | control of the test solution having, as nearly as possible, the same intensity    |  |  |
|                           | of colour as that of the test solution.                                           |  |  |
|                           | (b) Procedure (with extraction)                                                   |  |  |
|                           | 9. Extract immediately the copper organometallic compound produced as             |  |  |
|                           | described in the last paragraph under (a) with four successive portions, 2.5      |  |  |
|                           | mL each, of carbon tetrachloride and compare the colour of the solution so        |  |  |
|                           | obtained in a colorimeter with the extracts of control solution similarly         |  |  |
|                           | prepared.                                                                         |  |  |
|                           | 10. Chloroform may be used but carbon tetrachloride is better as it is almost     |  |  |
|                           | insoluble in water and forms clearer solution, which separates quickly.           |  |  |
| Calculation with units of | Calculate copper as follows:                                                      |  |  |
| expression                | Copper (as Cu), in ppm = $0.2845 \times 12.5 \text{ V}$                           |  |  |
|                           | Where                                                                             |  |  |
|                           | V= volume of standard copper solution in the control solution which gives the     |  |  |
|                           | closest match, in mL.                                                             |  |  |
| Reference                 | 1. AOAC 960.17, Copper in Beer, Direct, Non ashing Method                         |  |  |
|                           | 2. A.O.A.C 15th edn, Official Method 960.40 Copper in Food                        |  |  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                              |  |  |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food | Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n of Copper using Potassium Ferrocyanide                                                                                                                           |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ministry of Health and Family Welfare, Government of India  Method No.                        | FSSAI 13.025:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Revision No. & Date 0.0                                                                                                                                            |
| Scope                                                                                         | ferrocyanide method are of<br>The potassium ferrocyal<br>sensitive and accurate for<br>method is more sensitive<br>or where zinc is present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | anide method is easier to perform and sufficiently or routine type of analysis. The diethyldithiocarbamate and shall serves as a referee method in case of dispute |
| Caution                                                                                       | 1. Sulphuric acid: Conc cause serious burns of because it not only cat as a result of dehydration skin, paper, metals, a direct contact with the this chemical may copossibly death.  2. Hydrochloric acid: It The acid itself is correare also dangerous. If or internal organs, the cases.  3. Ammonia solution: Cocorrosive injury inclusting the full extent of eye exposure. Contact with the ful | per sulfate can cause severe eye irritation. Eating large lfate can lead to nausea, vomiting, and damage to body                                                   |

|                         | headache.                                                                                              |
|-------------------------|--------------------------------------------------------------------------------------------------------|
| Principle               | Copper solutions react with Potassium ferrocyanide solutions and forms red-                            |
| -                       | brown solutions of Copper (II) hexacyanoferrate.                                                       |
| Apparatus / Instruments | 1. General Glassware and apparatus (Refer 2.0 at page no. 2).                                          |
|                         | 2. Nessler tubes - Flat bottom tubes of thin, colourless glass, about 25 mm in                         |
|                         | diameter and about 150 mm in length and graduated at 50 mL. The depth                                  |
|                         | measured internally from graduation mark to the bottom shall not vary by                               |
|                         | more than 2 mm in the tubes used for the test.                                                         |
| Materials and Reagents  | 1. Alcoholic beverages.                                                                                |
|                         | 2. Concentrated Sulphuric acid.                                                                        |
|                         | 3. Concentrated Nitric acid.                                                                           |
|                         | 4. Concentrated Hydrochloric acid.                                                                     |
|                         | 5. Citric acid, AR grade.                                                                              |
|                         | 6. Ammonium hydroxide.                                                                                 |
|                         | 7. Copper sulphate (CuSO <sub>4</sub> .5H <sub>2</sub> O).                                             |
|                         | 8. Ammonium chloride, AR grade.                                                                        |
|                         | 9. Acetic acid.                                                                                        |
|                         | 10. Potassium ferrocyanide.                                                                            |
| Preparation of reagents | 1. Dilute sulphuric acid, approximately 10% (v/v).                                                     |
|                         | 2. Aqua regia, a mixture of one volume of concentrated nitric acid, and three                          |
|                         | volumes of concentrated hydrochloric acid.                                                             |
|                         | 3. Standard copper solution – Dissolve 1.119 g of copper sulphate                                      |
|                         | (CuSO <sub>4</sub> .5H <sub>2</sub> O) in water and dilute to one litre. Dilute 10 mL of this solution |
|                         | to 100 mL. One millilitre of the diluted solution contains 0.028545 mg of                              |
|                         | copper. The diluted solution shall always be prepared immediately before use.                          |
|                         | 4. Acetic acid, approximately 5% by weight.                                                            |
|                         | 5. Potassium ferrocyanide solution, approximately 4% by weight.                                        |
| Sample Preparation      | 1. Transfer 20 mL of the material into silica evaporating dish and add 1 mL of                         |
|                         | dilute sulphuric acid.                                                                                 |
|                         | 2. Heat gently in the beginning and then evaporate almost to dryness on a water-                       |
|                         | bath.                                                                                                  |
|                         | 3. Ignite the residue over a smokeless flame to eliminate sulphuric acid.                              |
|                         | 4. Cool, dissolve the residue in 2 mL of water, add three drops of aqua regia and                      |
|                         | evaporate to dryness on a water bath.                                                                  |
|                         | 5. Dissolve the residue in 2 mL of water, add three drops of aqua regia and                            |
|                         | evaporates to dryness on a water bath.                                                                 |
|                         | 6. Dissolve the residue in 2 mL of dilute hydrochloric acid and warm gently till                       |
|                         | the residue is dissolved.                                                                              |
|                         | 7. Add 0.5 g of ammonium chloride and dilute to 15 mL with water distilled in                          |
|                         | an all-glass apparatus.                                                                                |
|                         | 8. Add dilute ammonium hydroxide till alkaline. Boil off excess of ammonia                             |
|                         | and filter into a clean Nessler tube.                                                                  |
|                         |                                                                                                        |
|                         | 9. Cool and then render the solution acidic with acetic acid (3 to 5 drops are usually sufficient).    |
| Mothod of Analysis      | •                                                                                                      |
| Method of Analysis      | 1. Dilute the above solution to 40 mL. Add 0.5 mL of potassium ferrocyanide                            |
|                         | solution, stir and make up the volume to 50 mL.                                                        |
|                         | Note-If copper is more, a lesser amount, say 10 mL of the material may be taken for the test           |
|                         | for the test.                                                                                          |
|                         | 2. Prepare a series of control solutions each containing in 50 mL, 0.5 g of                            |

|                           | ammonium chloride, 3 to 5 drops of acetic acid and 0.5 mL of potassium              |
|---------------------------|-------------------------------------------------------------------------------------|
|                           | ferrocyanide solution together with an increasing amount of copper, namely,         |
|                           | 2 mL, 4 mL, 6 mL, 8 mL and 10 mL of the standard copper solution.                   |
|                           | 3. Compare the test solution (1) with control solutions and note the millilitres of |
|                           | standard copper solution added in the control of the test solution having, as       |
|                           | nearly as possible, the same intensity of colour as that of the test solution.      |
| Calculation with units of | Calculate copper as follows:                                                        |
| expression                | Copper (as Cu), in ppm = $0.2845 \times 12.5$ V                                     |
|                           | Where                                                                               |
|                           | V= volume of standard copper solution in the control solution which gives the       |
|                           | closest match, in mL.                                                               |
| Reference                 | 1. AOAC 960.17, Copper in Beer, Direct, Non ashing Method                           |
|                           | 2. A.O.A.C 960.40, 1965, 15th edn, Official Method, Copper in Food                  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                                |

|                                                                                               | Determination of Copper - Cuperthol Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ministry of Health and Family Welfare, Government of India  Method No.                        | FSSAI 13.026:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Scope                                                                                         | Estimation of copper present in alcoholic beverages by Cuperthol Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Caution                                                                                       | Nitric acid: May be fatal if inhaled. Causes severe eye and skin burns. Causes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Caution                                                                                       | severe respiratory and digestive tract burns. Strong oxidizer. Contact with other material may cause a fire. Acute pulmonary edema or chronic obstructive lung disease may occur from inhalation of the vapors of nitric acid. Corrosive to metal. Target Organs: Lungs, eyes, skin, mucous membranes.  2. Acetic acid: Acetic acid can be a hazardous chemical if not used in a safe and appropriate manner. This liquid is highly corrosive to the skin and eyes and, because of this, must be handled with extreme care. Acetic acid can also be damaging to the internal organs if ingested or in the case of vapor inhalation.  3. Diethanolamine: Causes serious eye damage. Causes skin irritation. Suspected of causing cancer. May cause respiratory irritation. May cause damage to organs through prolonged or repeated exposure.  4. Methanol: Methanol is highly flammable and toxic. Direct ingestion of more than 10 mL can cause permanent blindness by destruction of the optic nerve, poisoning of the central nervous system, coma and possibly death. These hazards are also true if methanol vapors are inhaled. |
|                                                                                               | 5. Carbon disulfide: Highly flammable liquid and vapour. Harmful if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                               | swallowed. Causes skin irritation. Causes serious eye irritation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                               | 6. Sodium acetate: May cause irritation to skin, eyes, and respiratory tract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Principle                                                                                     | Divalent copper forms a coloured complex with Cuperthol. Based on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                               | absorbance of the coloured complex solution copper is determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Apparatus / Instruments                                                                       | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>Photometer - Spectrophotometer (with blue-green or green filter) set at 445 nm and with 40-50 mm cells.</li> <li>Copper-free glassware: - Clean all glassware with 0.1M HNO<sub>3</sub> and rinse thoroughly with Cu-free distilled water.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Materials and Reagents                                                                        | <ol> <li>Alcoholic beverages.</li> <li>Diethanolamine ((HOCH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>NH)</li> <li>Methanol.</li> <li>Carbon disulfide.</li> <li>Copper sulphate CuSO<sub>4</sub>.5H<sub>2</sub>O (free of whitish deposit of lower hydrates).</li> <li>Pure Cu wire or foil.</li> <li>Nitric acid.</li> <li>Anhydrous Sodium acetate (CH<sub>3</sub>COONa)</li> <li>Acetic acid (CH<sub>3</sub>COOH).</li> <li>Copper-free distilled water.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Preparation of reagents                                                                       | <ol> <li>Diethanolamine ((HOCH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>NH) solution: - Dissolve 4.0 mL diethanolamine in 200 mL methanol.</li> <li>Carbon disulfide solution: - Add 1.0 mL CS<sub>2</sub> (Free of precipitate S) to 200 mL methanol.</li> <li>Cuprethol solution: - Mix 3 volumes solution (a) and one volume solution (b). Prepare fresh daily. Also mix equal volumes of solution (a) and methanol for blank.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|                                      | Conner standard solutions                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Copper standard solutions: - i) Stock solution (conc. 1mg/mL): - Dissolve 3.93 g CuSO <sub>4</sub> .5H <sub>2</sub> O (free of whitish deposit of lower hydrates) and dilute to 1 L with H <sub>2</sub> O or dissolve 1.000 g pure Cu wire or foil in 72 mL HNO <sub>3</sub> (1+4) by warming. Boil to expel fumes, cool, and dilute to 1 L with H <sub>2</sub> O. |
|                                      | ii) Working solution (conc.10 μg/mL): -Prepare immediately before use by diluting 5 mL stock solution with Cu-free distilled H <sub>2</sub> O to 500 mL in volumetric flask.                                                                                                                                                                                       |
|                                      | 4. Buffer solution: - pH 4.4. Dissolve 63.3 g anhydrous sodium acetate (CH <sub>3</sub> COONa) in ca 800 mL H <sub>2</sub> O containing 65 mL acetic acid (CH <sub>3</sub> COOH). Dilute to 1 L with H <sub>2</sub> O.                                                                                                                                             |
|                                      | 5. Copper-free distilled water: - Use distilled water redistilled from all-glass apparatus throughout method.                                                                                                                                                                                                                                                      |
| Procedure / Extraction               | 1. Preparation of standard curve -Into series of glass-stoppered 100 mL volumetric flasks add 0.0, 1.0, 2.0, 4.0, 8.0 and 12.0 mL Cu working standard solution containing 0.0, 0.4, 0.8, 1.6, 3.2, and 4.8μg/mL Cu, respectively.                                                                                                                                  |
|                                      | 2. Add H <sub>2</sub> O to 12 mL in each flask. Dilute to volume with degassed Low-Cu beer.                                                                                                                                                                                                                                                                        |
|                                      | 3. Preparation of test portion - Cool bottle or Can of beer / wine and shake thoroughly immediately before opening.                                                                                                                                                                                                                                                |
|                                      | <ul><li>4. Let gas bubbles leave liquid before removing cap or puncturing can.</li><li>5. Discard ca 1/3 of beer and degas by swirling.</li></ul>                                                                                                                                                                                                                  |
|                                      | <ul> <li>6. Remove test portion directly from container, mix, and proceed.</li> <li>7. Use 0.0 Solution to zero instrument, and obtain <i>A</i> (absorbance) or scale readings for 0.1, 0.2, 0.4, 0.8, and 1.2 μg/mL added Cu.</li> </ul>                                                                                                                          |
|                                      | 8. A over this range follows Beer's Law. Calculate average factor, $F$ , converting $A$ or scale reading to $\mu$ g/mL Cu.                                                                                                                                                                                                                                         |
|                                      | 9. If instrument response is not linear, draw and use smooth curve for calculating μg/mL Cu.  Determination                                                                                                                                                                                                                                                        |
|                                      | 10. Slowly pour 50 mL cold beer into 50 mL graduate, avoid foaming. Transfer to 125 mL flask, add 25 mL buffer solution and mix.                                                                                                                                                                                                                                   |
|                                      | 11. Measure two 30 mL aliquots in 50 mL graduate and transfer to separate 50 mL flasks.                                                                                                                                                                                                                                                                            |
|                                      | 12. Add 3 mL cuprethol solution to one flask and 3 mL blank solution to other. Mix each and let stand 10 min.                                                                                                                                                                                                                                                      |
|                                      | 13. Zero instrument with blank. Determine <i>A</i> in same size cell and at same wavelength used in calibration.                                                                                                                                                                                                                                                   |
| Calculation with units of expression | Calculate $\mu$ g/mL Cu by multiplying $A$ or scale reading by $F$ , or use curve.                                                                                                                                                                                                                                                                                 |
| Reference                            | AOAC 972.12-1973, copper in beer. Cuprethol method                                                                                                                                                                                                                                                                                                                 |
| Approved by                          | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                                                                                                                                                               |



#### **Determination of Methyl Alcohol - Spectrophotometric Method**

| Inspiring Trust, Assuring Safe & Nutritious Food<br>Ministry of Health and Family Welfare, Government of India |                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method No.                                                                                                     | FSSAI 13.027:2021 <b>Revision No. &amp; Date</b> 0.0                                                                                                       |
| Scope                                                                                                          | This spectrophotometric method determines the methyl alcohol present in                                                                                    |
|                                                                                                                | alcoholic beverages.                                                                                                                                       |
| Caution                                                                                                        | 1. Sulphuric acid: Concentrated sulfuric acid is extremely corrosive and can cause                                                                         |
|                                                                                                                | serious burns when not handled properly. This chemical is unique because it                                                                                |
|                                                                                                                | not only causes chemical burns, but also secondary thermal burns as a result of                                                                            |
|                                                                                                                | dehydration. This dangerous chemical is capable of corroding skin, paper, metals, and even stone in some cases. If sulfuric acid makes direct contact with |
|                                                                                                                | the eyes, it can cause permanent blindness. If ingested, this chemical may cause                                                                           |
|                                                                                                                | internal burns, irreversible organ damage, and possibly death.                                                                                             |
|                                                                                                                | 2. Methanol: Methanol is highly flammable and toxic. Direct ingestion of more                                                                              |
|                                                                                                                | than 10mL can cause permanent blindness by destruction of the optic nerve,                                                                                 |
|                                                                                                                | poisoning of the central nervous system, coma and possibly death. These                                                                                    |
|                                                                                                                | hazards are also true if methanol vapors are inhaled.                                                                                                      |
|                                                                                                                | 3. Phosphoric acid: Repeated or prolonged exposure to phosphoric acid mist can                                                                             |
|                                                                                                                | lead to chronic eye irritation, severe skin irritation, or prolonged respiratory                                                                           |
|                                                                                                                | tract issues.                                                                                                                                              |
|                                                                                                                | 4. Potassium permanganate: Potassium Permanganate can affect you when                                                                                      |
|                                                                                                                | breathed in. Contact can severely irritate and burn the skin and eyes with                                                                                 |
|                                                                                                                | possible <b>eye</b> damage. Breathing Potassium Permanganate can irritate the nose                                                                         |
|                                                                                                                | and throat. Breathing Potassium Permanganate can irritate the lungs causing                                                                                |
|                                                                                                                | coughing and/or shortness of breath.                                                                                                                       |
|                                                                                                                | 5. Sodium salt of chromotropic acid: Causes skin irritation. Causes serious eye                                                                            |
|                                                                                                                | irritation.                                                                                                                                                |
|                                                                                                                | 6. Isopropyl alcohol: Swallowing or inhaling isopropyl alcohol can cause                                                                                   |
|                                                                                                                | headache, dizziness, vomiting, nausea, and unconsciousness. Long-term effects of working with this substance are not well-known at this time, so care      |
|                                                                                                                | and caution should be taken when handling isopropyl alcohol and isopropyl                                                                                  |
|                                                                                                                | products as a preventative measure.                                                                                                                        |
| Principle                                                                                                      | Methanol is oxidized to formaldehyde (methanol) by potassium permanganate                                                                                  |
| P                                                                                                              | (acidified by phosphoric acid). The amount of formaldehyde is determined by the                                                                            |
|                                                                                                                | violet color formed by the reaction of chromotropic acid in a sulfuric medium.                                                                             |
| Apparatus / Instruments                                                                                        | 1. General Glassware and apparatus (Refer 2.0 at page no. 2).                                                                                              |
|                                                                                                                | 2. Separating funnel.                                                                                                                                      |
|                                                                                                                | 3. Spectrophotometer                                                                                                                                       |
| Materials and Reagents                                                                                         | 1. Alcoholic beverages                                                                                                                                     |
|                                                                                                                | 2. Potassium permanganate                                                                                                                                  |
|                                                                                                                | 3. Phosphoric acid (H <sub>3</sub> PO <sub>4</sub> )                                                                                                       |
|                                                                                                                | 4. Sodium salt of chromotropic acid (sodium 1,8- dihydroxynaphthalene - 3,6                                                                                |
|                                                                                                                | disulfonate) 5. Methanol                                                                                                                                   |
|                                                                                                                | 6. Ethanol                                                                                                                                                 |
|                                                                                                                | 7. Isopropyl alcohol                                                                                                                                       |
|                                                                                                                | 8. Sulphuric acid (H <sub>2</sub> SO <sub>4</sub> )                                                                                                        |
| Preparation of reagents                                                                                        | 1. Potassium permanganate solution: 3.0 g KMnO <sub>4</sub> and 15.0 mL H <sub>3</sub> PO <sub>4</sub> shall be                                            |
| reparation of reagents                                                                                         | dissolved in 100 mL water. The solution shall be prepared monthly.                                                                                         |
|                                                                                                                | and the sound of the solution shall be prepared monthly.                                                                                                   |

|                           | 2. Sodium salt of chromotropic acid (sodium 1,8- dihydroxynaphthalene - 3,6            |
|---------------------------|----------------------------------------------------------------------------------------|
|                           | disulfonate) 5% aqueous solution (w/v). If not clear, the sodium salt                  |
|                           | chromotropic acid shall be filtered. It shall be prepared weekly.                      |
|                           | Purification of chromotropic acid                                                      |
|                           | 3. If absorbance of blank is greater than 0.05, the reagent shall be purified as       |
|                           | follows: 10 g chromotropic acid or its Na salt shall be dissolved in 25 mL water       |
|                           | (add 2 mL $H_2SO_4$ shall be added to the aqueous solution of the salt to convert it   |
|                           | to free acid).                                                                         |
|                           | 4. Add 50 mL of methanol and heat to just boiling and filter.                          |
|                           | 5. Add 100 mL isopropyl alcohol to precipitate free chromotropic acid.                 |
|                           |                                                                                        |
|                           | 6. More isopropyl alcohol may be added to increase yield of purified acid.             |
|                           | Methanol Stock solution                                                                |
|                           | 7. Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol                |
|                           | (methanol free). Dilute to 10 mL of this solution to 100 mL with 40% ethanol           |
|                           | (methanol free). This is 1000 ppm solution.                                            |
|                           | Methanol Standard solution:                                                            |
|                           | 8. Dilute appropriate volume of methanol (11.1.4) to 100 mL vol. flasks with 40%       |
|                           | ethanol to get final concentration of 20, 40, 60, 80 and 100 ppm of methanol.          |
| Method of Analysis        | 1. Take 50 mL of sample in a simple still and distil, collecting about 40 mL of        |
|                           | distillate.                                                                            |
|                           | 2. Dilute 1 mL of distillate to 5mL with distilled water and shaken well.              |
|                           | 3. Take 1 mL of this solution, 1 mL of distilled water (for blank) and 1 mL of         |
|                           | each of the methanol standards in to 50 mL stoppered test tubes and keep them          |
|                           | in an ice-cold water bath.                                                             |
|                           | 4. Add to each test tube, 2 mL of KMnO <sub>4</sub> reagent and keep aside for 30 min. |
|                           | 5. Decolourize the solution by adding a little sodium bisulphite and add 1 mL of       |
|                           | chromotropic acid solution.                                                            |
|                           | 6. Mix well and add 15 mL of sulphuric acid slowly with swirling and place in hot      |
|                           | water bath maintaining 80 °C for 20 min. Observe the colour development from           |
|                           | violet to red.                                                                         |
|                           | 7. Cool the mixture and measure the absorbance at 575 nm using 1cm cuvette cell.       |
| Calculation with units of | Calculate methanol content in g/100 litres of absolute alcohol as follows:             |
| expression                | $Methanol = (A_2 \times C \times D \times 1000 \times 100 \times 100)/(A_1 \times S)$  |
|                           | Where,                                                                                 |
|                           | $A_2$ = absorbance of sample solution                                                  |
|                           | C = concentration of methanol std. solution                                            |
|                           | D = dilution factor for sample solution                                                |
|                           | $A_1$ = absorbance of methanol std. solution                                           |
|                           | S = ethanol content (%) of liquor sample (v/v)                                         |
| Reference                 | 1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test                       |
|                           | 2. IS Standard – IS 7585:1995, Wines, Methods of Analysis                              |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                                   |
| Approved by               | Selentine I alief on Methods of Sampling and Alialysis                                 |



#### **Determination of Methyl Alcohol - Gas Chromatographic Method**

| This Gas chromatographic method determines the methyl alcohol present in alcoholic beverages.  1. Methanol: Methanol is highly flammable and toxic. Direct ingestion of more than 10 mL can cause permanent blindness by destruction of the optic nerve, poisoning of the central nervous system, coma and possibly death. These hazards are also true if methanol vapors are inhaled.  2. n-Pentanol: The substance is irritating to the eyes, skin and respiratory tract. If swallowed the substance may cause vomiting and could result in aspiration pneumonitis. The substance may cause effects on the central nervous system.  Methyl alcohol is estimated using GC by the comparison of Peak areas of known quantities of authentic standards of methanol, n-propanol and test sample.  1. General Glassware and apparatus (Refer 2.0 at page no. 2).  2. Gas Chromatograph, FID Detector, split injection port, fixed with capillary column (HP Carbowax 20M of 30m x 0.32mm ID x 0.25 µm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 µm film thickness).  3. N <sub>2</sub> or He as carrier gas at a flow rate of 1.0mL/min.  4. The detector and injector port temperatures are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).  5. Syringe – 10 µL, Hamilton Co., or equivalent.  1. Alcoholic beverages.  2. Ethanol – Methanol free.  3. n-Pentanol.  4. Methanol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Inspiring Trust, Assuring Safe & Nutritious Food<br>Ministry of Health and Family Welfare, Government of India |                                                                                   |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Acaution   1. Methanol: Methanol is highly flammable and toxic. Direct ingestion of more than 10 mL can cause permanent blindness by destruction of the optic nerve, poisoning of the central nervous system, coma and possibly death. These hazards are also true if methanol vapors are inhaled.   2. n-Pentanol: The substance is irritating to the eyes, skin and respiratory tract. If swallowed the substance may cause vomiting and could result in aspiration pneumonitis. The substance may cause effects on the central nervous system.    Methyl alcohol is estimated using GC by the comparison of Peak areas of known quantities of authentic standards of methanol, n-propanol and test sample.   1. General Glassware and apparatus (Refer 2.0 at page no. 2).   2. Gas Chromatograph, FID Detector, split injection port, fixed with capillary column (HP Carbowax 20M of 30m x 0.32mm ID x 0.25 µm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 µm film thickness.   3. N <sub>2</sub> or He as carrier gas at a flow rate of 1.0mL/min.   4. The detector and injector port temperatures are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).   5. Syringe - 10 µL, Hamilton Co., or equivalent.   1. Alcoholic beverages.   2. Ethanol - Methanol free.   3. n-Pentanol.   4. Methanol.   1. N-Pentanol Internal standard - 0.05% w/v n-pentanol in 40% ethanol (v/v).   2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution and mix well.                                                                                                                                                                                                                                                 | Method No.                                                                                                     | FSSAI 13.028:2021                                                                 |  |
| 1. Methanol: Methanol is highly flammable and toxic. Direct ingestion of more than 10 mL can cause permanent blindness by destruction of the optic nerve, poisoning of the central nervous system, coma and possibly death. These hazards are also true if methanol vapors are inhaled.  2. n-Pentanol: The substance is irritating to the eyes, skin and respiratory tract. If swallowed the substance may cause vomiting and could result in aspiration pneumonitis. The substance may cause effects on the central nervous system.  Methyl alcohol is estimated using GC by the comparison of Peak areas of known quantities of authentic standards of methanol, n-propanol and test sample.  Apparatus / Instruments  1. General Glassware and apparatus (Refer 2.0 at page no. 2).  2. Gas Chromatograph, FID Detector, split injection port, fixed with capillary column (HP Carbowax 20M of 30m x 0.32mm ID x 0.25 µm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 µm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 µm film thickness).  3. N <sub>2</sub> or He as carrier gas at a flow rate of 1.0mL/min.  4. The detector and injector port temperatures are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).  5. Syringe – 10 µL, Hamilton Co., or equivalent.  Materials and Reagents  1. Alcoholic beverages.  2. Ethanol – Methanol.  3. n-Pentanol.  4. Methanol.  1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v).  2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol.  3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.                                                     | Scope                                                                                                          | • 1                                                                               |  |
| than 10 mL can cause permanent blindness by destruction of the optic nerve, poisoning of the central nervous system, coma and possibly death. These hazards are also true if methanol vapors are inhaled.  2. n-Pentanol: The substance is irritating to the eyes, skin and respiratory tract. If swallowed the substance may cause vomiting and could result in aspiration pneumonitis. The substance may cause effects on the central nervous system.  Methyl alcohol is estimated using GC by the comparison of Peak areas of known quantities of authentic standards of methanol, n-propanol and test sample.  1. General Glassware and apparatus (Refer 2.0 at page no. 2).  2. Gas Chromatograph, FID Detector, split injection port, fixed with capillary column (HP Carbowax 20M of 30m x 0.32mm ID x 1.0 µm film thickness or SPB 20 capillary column of 30m x 0.32mm ID x 1.0 µm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 µm film thickness.  3. N <sub>2</sub> or He as carrier gas at a flow rate of 1.0mL/min.  4. The detector and injector port temperatures are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).  5. Syringe – 10 µL, Hamilton Co., or equivalent.  1. Alcoholic beverages.  2. Erhanol – Methanol free.  3. n-Pentanol.  4. Methanol.  1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v).  2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol.  3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                       |                                                                                                                |                                                                                   |  |
| poisoning of the central nervous system, coma and possibly death. These hazards are also true if methanol vapors are inhaled.  2. n-Pentanol: The substance is irritating to the eyes, skin and respiratory tract. If swallowed the substance may cause vomiting and could result in aspiration pneumonitis. The substance may cause effects on the central nervous system.  Methyl alcohol is estimated using GC by the comparison of Peak areas of known quantities of authentic standards of methanol, n-propanol and test sample.  1. General Glassware and apparatus (Refer 2.0 at page no. 2).  2. Gas Chromatograph, FID Detector, split injection port, fixed with capillary column (HP Carbowax 20M of 30m x 0.32mm ID x 0.25 μm film thickness or SPB 20 capillary column of 30m x 0.32mm ID x 1.0 μm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 μm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 μm film thickness or SPB 20 capillary column and single trace are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).  5. Syringe – 10 μL, Hamilton Co., or equivalent.  1. Alcoholic beverages.  2. Ethanol – Methanol free.  3. n-Pentanol.  4. Methanol.  1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v).  2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                       | Caution                                                                                                        |                                                                                   |  |
| hazards are also true if methanol vapors are inhaled.  2. n-Pentanol: The substance is irritating to the eyes, skin and respiratory tract. If swallowed the substance may cause effects on the central nervous system.  Methyl alcohol is estimated using GC by the comparison of Peak areas of known quantities of authentic standards of methanol, n-propanol and test sample.  Apparatus / Instruments  1. General Glassware and apparatus (Refer 2.0 at page no. 2). 2. Gas Chromatograph, FID Detector, split injection port, fixed with capillary column (HP Carbowax 20M of 30m x 0.32mm ID x 0.25 μm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 μm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 μm film thickness.)  3. N₂ or He as carrier gas at a flow rate of 1.0mL/min.  4. The detector and injector port temperatures are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).  5. Syringe – 10 μL, Hamilton Co., or equivalent.  Materials and Reagents  1. Alcoholic beverages. 2. Ethanol – Methanol free. 3. n-Pentanol. 4. Methanol. 4. Methanol. 5. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v). 2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol. 3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-pentanol internal add 1 mL of n-pentanol made add 1 mL of n-pentanol made add 1 m          |                                                                                                                |                                                                                   |  |
| 2. n-Pentanol: The substance is irritating to the eyes, skin and respiratory tract. If swallowed the substance may cause vomiting and could result in aspiration pneumonitis. The substance may cause effects on the central nervous system.  Methyl alcohol is estimated using GC by the comparison of Peak areas of known quantities of authentic standards of methanol, n-propanol and test sample.  1. General Glassware and apparatus (Refer 2.0 at page no. 2). 2. Gas Chromatograph, FID Detector, split injection port, fixed with capillary column (HP Carbowax 20M of 30m x 0.32mm ID x 0.25 μm film thickness or SPB 20 capillary column of 30m x 0.32mm ID x 1.0 μm film thickness or SPB 20 capillary column of 30m x 0.32mm ID x 1.0 μm film thickness.  3. N₂ or He as carrier gas at a flow rate of 1.0mL/min.  4. The detector and injector port temperatures are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).  5. Syringe – 10 μL, Hamilton Co., or equivalent.  1. Alcoholic beverages.  2. Ethanol – Methanol free.  3. n-Pentanol.  4. Methanol.  1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v).  2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol.  3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                              |                                                                                                                |                                                                                   |  |
| If swallowed the substance may cause vomiting and could result in aspiration pneumonitis. The substance may cause effects on the central nervous system.  Methyl alcohol is estimated using GC by the comparison of Peak areas of known quantities of authentic standards of methanol, n-propanol and test sample.  1. General Glassware and apparatus (Refer 2.0 at page no. 2). 2. Gas Chromatograph, FID Detector, split injection port, fixed with capillary column (HP Carbowax 20M of 30m x 0.32mm ID x 0.25 µm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 µm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 µm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 µm film thickness or SPB 20 capillary column of 30m x 0.70min and finally at to 200 °C for 10 min at the rate of 1.0 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).  5. Syringe – 10 µL, Hamilton Co., or equivalent.  1. Alcoholic beverages. 2. Ethanol – Methanol free. 3. n-Pentanol. 4. Methanol. 1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v). 2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol. 3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                | <u>-</u>                                                                          |  |
| Principle  Methyl alcohol is estimated using GC by the comparison of Peak areas of known quantities of authentic standards of methanol, n-propanol and test sample.  Apparatus / Instruments  1. General Glassware and apparatus (Refer 2.0 at page no. 2).  2. Gas Chromatograph, FID Detector, split injection port, fixed with capillary column (HP Carbowax 20M of 30m x 0.32mm ID x 0.25 µm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 µm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 µm film thickness).  3. N <sub>2</sub> or He as carrier gas at a flow rate of 1.0mL/min.  4. The detector and injector port temperatures are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).  5. Syringe – 10 µL, Hamilton Co., or equivalent.  Materials and Reagents  1. Alcoholic beverages. 2. Ethanol – Methanol free. 3. n-Pentanol. 4. Methanol. 1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v). 2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol. 3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                   |  |
| Principle         Methyl alcohol is estimated using GC by the comparison of Peak areas of known quantities of authentic standards of methanol, n-propanol and test sample.           Apparatus / Instruments         1. General Glassware and apparatus (Refer 2.0 at page no. 2).           2. Gas Chromatograph, FID Detector, split injection port, fixed with capillary column (HP Carbowax 20M of 30m x 0.32mm ID x 0.25 μm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 μm film thickness).           3. N₂ or He as carrier gas at a flow rate of 1.0mL/min.         4. The detector and injector port temperatures are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).           Materials and Reagents         1. Alcoholic beverages.           2. Ethanol – Methanol free.         3. n-Pentanol.           4. Methanol.         1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v).           2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol.           3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.           Preparation of Test Samples         Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-pentanol internal and add 1 mL of n-pentanol internal and add 1 mL of n-pentanol internal and add 1 mL of n-pentanol inter                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                                                   |  |
| quantities of authentic standards of methanol, n-propanol and test sample.   Apparatus / Instruments   1. General Glassware and apparatus (Refer 2.0 at page no. 2).     2. Gas Chromatograph, FID Detector, split injection port, fixed with capillary column (HP Carbowax 20M of 30m x 0.32mm ID x 0.25 μm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 μm film thickness).     3. N₂ or He as carrier gas at a flow rate of 1.0mL/min.     4. The detector and injector port temperatures are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).     5. Syringe − 10 μL, Hamilton Co., or equivalent.     1. Alcoholic beverages.     2. Ethanol − Methanol free.     3. n-Pentanol.     4. Methanol.     9. Preparation of reagents     1. N-Pentanol Internal standard − 0.05% w/v n-pentanol in 40% ethanol (v/v).     2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol.     3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.     Preparation of Test Samples     Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-pentanol internal and add 1 mL of n-pentanol internal and add 1 mL of n-pentanol and add 1 mL of n-pen            | D: :1                                                                                                          |                                                                                   |  |
| 1. General Glassware and apparatus (Refer 2.0 at page no. 2). 2. Gas Chromatograph, FID Detector, split injection port, fixed with capillary column (HP Carbowax 20M of 30m x 0.32mm ID x 0.25 μm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 μm film thickness). 3. N₂ or He as carrier gas at a flow rate of 1.0mL/min. 4. The detector and injector port temperatures are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics). 5. Syringe − 10 μL, Hamilton Co., or equivalent.  1. Alcoholic beverages. 2. Ethanol − Methanol free. 3. n-Pentanol. 4. Methanol. 1. N-Pentanol Internal standard − 0.05% w/v n-pentanol in 40% ethanol (v/v). 2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol. 3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Principle                                                                                                      |                                                                                   |  |
| 2. Gas Chromatograph, FID Detector, split injection port, fixed with capillary column (HP Carbowax 20M of 30m x 0.32mm ID x 0.25 μm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 μm film thickness).  3. N <sub>2</sub> or He as carrier gas at a flow rate of 1.0mL/min.  4. The detector and injector port temperatures are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).  5. Syringe – 10 μL, Hamilton Co., or equivalent.  1. Alcoholic beverages.  2. Ethanol – Methanol free. 3. n-Pentanol. 4. Methanol.  1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v). 2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol. 3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |                                                                                   |  |
| column (HP Carbowax 20M of 30m x 0.32mm ID x 0.25 µm film thickness or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 µm film thickness).  3. N <sub>2</sub> or He as carrier gas at a flow rate of 1.0mL/min.  4. The detector and injector port temperatures are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).  5. Syringe – 10 µL, Hamilton Co., or equivalent.  Materials and Reagents  1. Alcoholic beverages. 2. Ethanol – Methanol free. 3. n-Pentanol. 4. Methanol.  1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v). 2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol. 3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Apparatus / Instruments                                                                                        |                                                                                   |  |
| or SPB 20 capillary column of 30m x 0.25mm ID x 1.0 μm film thickness).  3. N <sub>2</sub> or He as carrier gas at a flow rate of 1.0mL/min.  4. The detector and injector port temperatures are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).  5. Syringe – 10 μL, Hamilton Co., or equivalent.  Materials and Reagents  1. Alcoholic beverages. 2. Ethanol – Methanol free. 3. n-Pentanol. 4. Methanol.  1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v). 2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol. 3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                   |  |
| <ul> <li>3. N<sub>2</sub> or He as carrier gas at a flow rate of 1.0mL/min.</li> <li>4. The detector and injector port temperatures are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).</li> <li>5. Syringe – 10 μL, Hamilton Co., or equivalent.</li> <li>1. Alcoholic beverages.</li> <li>2. Ethanol – Methanol free.</li> <li>3. n-Pentanol.</li> <li>4. Methanol.</li> <li>1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v).</li> <li>2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol.</li> <li>3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.</li> <li>Preparation of Test Samples</li> <li>Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                | · ·                                                                               |  |
| <ul> <li>4. The detector and injector port temperatures are at 250 °C. Oven temperature is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).</li> <li>5. Syringe – 10 μL, Hamilton Co., or equivalent.</li> <li>Materials and Reagents</li> <li>1. Alcoholic beverages.</li> <li>2. Ethanol – Methanol free.</li> <li>3. n-Pentanol.</li> <li>4. Methanol.</li> <li>Preparation of reagents</li> <li>1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v).</li> <li>2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol.</li> <li>3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.</li> <li>Preparation of Test Samples</li> <li>Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-pentanol mix tube and</li></ul> |                                                                                                                |                                                                                   |  |
| is at 45 °C for 4 min and then raise to 100 °C/min at the rate of 10 °C/min and finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).  5. Syringe – 10 μL, Hamilton Co., or equivalent.  Materials and Reagents  1. Alcoholic beverages. 2. Ethanol – Methanol free. 3. n-Pentanol. 4. Methanol. 1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v). 2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol. 3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                                                                                   |  |
| finally at to 200 °C for 10 min at the rate of 15 °C /min. (Optimum operating conditions may vary with type of column used and instrumental characteristics).  5. Syringe – 10 μL, Hamilton Co., or equivalent.  Materials and Reagents  1. Alcoholic beverages. 2. Ethanol – Methanol free. 3. n-Pentanol. 4. Methanol.  Preparation of reagents  1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v). 2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol. 3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                |                                                                                   |  |
| conditions may vary with type of column used and instrumental characteristics).  5. Syringe – 10 μL, Hamilton Co., or equivalent.  1. Alcoholic beverages. 2. Ethanol – Methanol free. 3. n-Pentanol. 4. Methanol.  1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v). 2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol. 3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                   |  |
| characteristics).  5. Syringe – 10 µL, Hamilton Co., or equivalent.  1. Alcoholic beverages.  2. Ethanol – Methanol free.  3. n-Pentanol.  4. Methanol.  1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v).  2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol.  3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                |                                                                                   |  |
| 5. Syringe – 10 μL, Hamilton Co., or equivalent.  1. Alcoholic beverages. 2. Ethanol – Methanol free. 3. n-Pentanol. 4. Methanol.  1. N-Pentanol Internal standard – 0.05% w/ν n-pentanol in 40% ethanol (ν/ν). 2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (ν/ν) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol. 3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                | * **                                                                              |  |
| 1. Alcoholic beverages. 2. Ethanol – Methanol free. 3. n-Pentanol. 4. Methanol.  1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v). 2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol. 3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                |                                                                                   |  |
| 3. n-Pentanol. 4. Methanol.  Preparation of reagents  1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v). 2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol. 3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Materials and Reagents                                                                                         |                                                                                   |  |
| 4. Methanol.  Preparation of reagents  1. N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v).  2. Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol.  3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                | 2. Ethanol – Methanol free.                                                       |  |
| <ol> <li>N-Pentanol Internal standard – 0.05% w/v n-pentanol in 40% ethanol (v/v).</li> <li>Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol.</li> <li>Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.</li> <li>Preparation of Test Samples</li> </ol> Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                | 3. n-Pentanol.                                                                    |  |
| <ol> <li>Methanol Stock solution: Dilute 1.0 g methanol (99.99% pure) to 100 mL with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol.</li> <li>Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.</li> <li>Preparation of Test Samples</li> </ol> Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                |                                                                                   |  |
| with 40% (v/v) ethanol, methanol free. Dilute 10 mL of this solution to 100 mL with 40% ethanol.  3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Preparation of reagents</b>                                                                                 |                                                                                   |  |
| mL with 40% ethanol.  3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                                                                                   |  |
| 3. Methanol Standard solution: Transfer 5 mL of the above solution to a 10 mL stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                |                                                                                   |  |
| stoppered test tube and add 1 mL of n-pentanol internal std. solution and mix well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                |                                                                                   |  |
| well.  Preparation of Test Samples  Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                |                                                                                   |  |
| Preparation of Test Samples Transfer 5 mL of sample into a 10 mL stoppered test tube and add 1 mL of n-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                |                                                                                   |  |
| • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Propagation of Test Samples                                                                                    |                                                                                   |  |
| pentanoi internai standard and inix wen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rreparation of Test Samples                                                                                    | *                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Method of Analysis                                                                                             | •                                                                                 |  |
| chromatographic profile.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Michigan of Analysis                                                                                           | · · · · · · · · · · · · · · · · · · ·                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                | 2. Adjust the operating parameters and attenuation to obtain good resolution of   |  |
| the peaks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                             |  |
| 3. Determine the retention time of methanol and n-pentanol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | *                                                                                 |  |
| 4. Inject 2 μL sample solution into GC and record the chromatogram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                | _                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Calculation with units of                                                                                      |                                                                                   |  |
| expression $= (R_2 \times C \times D \times 1000 \times 100 \times 100) \div (R_1 \times S)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | expression                                                                                                     | $= (R_2 \times C \times D \times 1000 \times 100 \times 100) \div (R_1 \times S)$ |  |
| Where,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                | Where,                                                                            |  |

|             | $R_2$ = peak ratio of methanol to n-pentanol for sample solution |
|-------------|------------------------------------------------------------------|
|             | C = concentration of methanol in std. solution in g/mL           |
|             | D = dilution factor for sample solution                          |
|             | $R_1$ = peak ratio of methanol to n-pentanol for std. solution   |
|             | S = ethanol content of liquor sample in % (v/v).                 |
| Reference   | 1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test |
|             | 2. IS Standard – IS 7585:1995, Wines, Methods of Analysis        |
| Approved by | Scientific Panel on Methods of Sampling and Analysis             |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Walter, Government of India | Determination of Total Sulphur Dioxide (for Wines only) - Modified Monier<br>Williams Method (Shiphton's Method)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method No.                                                                                                                                              | FSSAI 13.029:2021 <b>Revision No. &amp; Date</b> 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Scope                                                                                                                                                   | Modified Monier Williams Method (Shiphton's Method) - This method is useful                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Caution                                                                                                                                                 | <ol> <li>to determine total sulphur dioxide present in wines.</li> <li>Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It can cause severe burns and permanent damage to any tissue that it comes in contact with. Sodium hydroxide can cause hydrolysis of proteins, and hence can cause burns in the eyes which may lead to permanent eye damage.</li> <li>Hydrochloric acid: Hydrochloric acid is a hazardous liquid which must be used with care. The acid itself is corrosive, and concentrated forms release acidic mists that are also dangerous. If the acid or mist come into contact with the skin, eyes, or internal organs, the damage can be irreversible or even fatal in severe cases.</li> </ol> |
|                                                                                                                                                         | <ol> <li>Hydrogen peroxide: Hydrogen peroxide is a strong oxidizer (moderate oxidizer in lower concentrations), and can be corrosive to the eyes, skin, and respiratory system. This chemical can cause burns to the skin and tissue damage to the eyes. Take special caution to avoid contact with hydrogen peroxide.</li> <li>Carbon dioxide: Carbon dioxide gas can cause injury or death. A high carbon dioxide gas concentration can cause suffocation. This sign should be posted outside each entrance to a carbon dioxide storage room.</li> </ol>                                                                                                                                                                                |
| Principle                                                                                                                                               | Sulphur dioxide on treatment with hydrogen peroxide oxidized to sulphuric acid and estimated using sodium hydroxide in presence of indicator bromophenol blue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Apparatus / Instruments                                                                                                                                 | 1. General Glassware and apparatus (Refer 2.0 at page no. 2).  2. Round bottom flask – 500 mL capacity connected to N <sub>2</sub> or CO <sub>2</sub> inlet source, coiled condenser, receiver and trap as shown in the figure.  SP   IB (Pare VIII) - 1984  Fig. 1 Assembler of Apparatus for the Dictributional Took of Southern Distributions of Southern Distributions of Analysis of Foods: Alcoholic beverages, 2019, Page 51.                                                                                                                                                                                                                                                                                                      |
| Materials and Reagents                                                                                                                                  | <ol> <li>Alcoholic beverages</li> <li>Hydrogen peroxide</li> <li>Sodium hydroxide</li> <li>Bromophenol indicator</li> <li>Ethyl alcohol</li> <li>Concentrated Hydrochloric acid – sp gr 1.16</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                           | 7. Carbon dioxide gas from a cylinder                                              |
|---------------------------|------------------------------------------------------------------------------------|
| Preparation of reagents   | 1. Hydrogen peroxide solution – Dilute a 30% hydrogen peroxide solution with       |
|                           | distilled water so as to obtain a 3% solution of hydrogen peroxide.                |
|                           | 2. Sodium hydroxide – 0.01N.                                                       |
|                           | 3. Bromophenol indicator solution – Dissolve 0.1 g of bromophenol blue in 3        |
|                           | mL of 0.05N sodium hydroxide solution and 5 mL of ethyl alcohol (90%) by           |
|                           | warming gently. Make up to 250 mL in a volumetric flask with 20% ethyl             |
|                           | alcohol.                                                                           |
| Method of Analysis        | Transfer 25 mL of Hydrogen peroxide solution to Erlenmeyer flask (J) and 5         |
| Withou of Analysis        | mL to Peligot tube (L), Assemble the apparatus as shown above.                     |
|                           |                                                                                    |
|                           | 2. Introduce into the flask (C) 300 mL water and 20 mL of conc. HCl through        |
|                           | the dropping funnel (E).                                                           |
|                           | 3. Run a steady current of cold water through the condenser (F).                   |
|                           | 4. To expel air from the system, boil the mixture contained in the flask (C) for   |
|                           | a short time in a current of Carbon dioxide gas previously passed through the      |
|                           | wash bottle (A).                                                                   |
|                           | 5. Weigh accurately about 25 g of wine sample and transfer with little quantity    |
|                           | of water into the flask (C) through the dropping funnel (E). Wash the              |
|                           | dropping funnel with a small quantity of water and run the washings into           |
|                           | flask (C).                                                                         |
|                           | 6. Distill by heating the mixture contained in the flask (C) in a slow current of  |
|                           | Carbon dioxide gas passed previously through the wash bottle (A) for 1 h.          |
|                           | 7. Just before the end of the distillation stop the flow of water in the condenser |
|                           | (This causes the condenser to become hot and drives off the residual traces        |
|                           | of sulphur dioxide retained in the condenser).                                     |
|                           | 8. When the delivery tube (H) just above the Erlenmeyer flask (J) becomes hot      |
|                           |                                                                                    |
|                           | to touch disconnect the stopper (G) immediately.                                   |
|                           | 9. Wash the delivery tube (H) and the contents of the Peligot tube (L) with        |
|                           | water into the Erlenmeyer flask (J).                                               |
|                           | 10. Cool the contents of the Erlenmeyer flask to room temperature, add a few       |
|                           | drops of bromophenol blue indicator and titrate with standard sodium               |
|                           | hydroxide solution (Bromophenol blue is unaffected by carbon dioxide and           |
|                           | gives a distinct colour change in cold hydrogen peroxide solution).                |
|                           | 11. The colour changes from yellow to light blue. Carry out a blank                |
|                           | determination using 20 mL of concentrated hydrochloric acid diluted with           |
|                           | 300 mL of water.                                                                   |
| Calculation with units of |                                                                                    |
| expression                | Sulphur Dioxide( $\frac{\text{mg}}{\text{kg}}$ ) = [32000(V - v) N] ÷ W            |
| •                         | Where,                                                                             |
|                           | V = volume in mL of standard sodium hydroxide solution                             |
|                           | required for the test sample.                                                      |
|                           | v = volume of standard sodium hydroxide solution required for                      |
|                           | the blank determination.                                                           |
|                           | N = normality of standard sodium hydroxide solution                                |
|                           | W = W weight in g of the sample taken for test                                     |
| Deference                 |                                                                                    |
| Reference                 | I.S.I. Hand book of Food Analysis (Part VIII) – 1984 page 12, Determination of     |
| A                         | Sulphur dioxide                                                                    |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                               |



#### Determination of Total Sulphur Dioxide (for Wines only) -Rosaniline Colorimetric Method

| Ministry of Health and Family Welfare, Government of India | ESSAL12 020-2021                                                                                                                                             |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method No.                                                 | FSSAI 13.030:2021 <b>Revision No. &amp; Date</b> 0.0  Rosaniline Colorimetric Method - This method is useful to determine total                              |
| Scope                                                      |                                                                                                                                                              |
| Caution                                                    | sulphur dioxide present in wines.                                                                                                                            |
| Caution                                                    | 1. p- Rosaniline hydrochloride: When heated to decomposition this compound emits very toxic fumes of hydrogen chloride and nitrogen oxides.                  |
|                                                            | 2. Hydrochloric acid: Hydrochloric acid is a hazardous liquid which must be                                                                                  |
|                                                            | used with care. The acid itself is corrosive, and concentrated forms                                                                                         |
|                                                            | release acidic mists that are also dangerous. If the acid or mist come into                                                                                  |
|                                                            | contact with the skin, eyes, or internal organs, the damage can be irreversible                                                                              |
|                                                            | or even fatal in severe cases.                                                                                                                               |
|                                                            | 3. Formaldehyde has been shown to cause cancer in laboratory animals and may                                                                                 |
|                                                            | cause cancer in humans. It also may cause birth defects. It is highly toxic if                                                                               |
|                                                            | swallowed, inhaled, or absorbed through skin or mucous membranes.                                                                                            |
|                                                            | Formaldehyde is corrosive, and the eyes are especially vulnerable. An air                                                                                    |
|                                                            | concentration of two parts per million (2 ppm) is quickly irritating to the eyes,                                                                            |
|                                                            | and 20 ppm can cause permanent clouding of the cornea after only one                                                                                         |
|                                                            | exposure. Formaldehyde is also a sensitizing agent. Subsequent exposures                                                                                     |
|                                                            | can produce symptoms more quickly and at lower concentrations. Symptoms                                                                                      |
|                                                            | of exposure may include coughing, eye or skin irritation, allergic reactions,                                                                                |
|                                                            | vomiting, and diarrhea.                                                                                                                                      |
|                                                            | 4. Mercuric chloride: Ingestion of metallic chloride-Metallic taste. Sore throat.                                                                            |
|                                                            | Burning sensation. Nausea. Abdominal pain. Vomiting. Diarrhoea. Shock or                                                                                     |
|                                                            | collapse.                                                                                                                                                    |
|                                                            | 5. Sodium thiosulphate: Inhalation: Sore throat, shortness of breath coughing,                                                                               |
|                                                            | and congestion. Eye Contact: Irritation to eyes and mucous. Skin Contact:                                                                                    |
|                                                            | Irritation, itching, dermatitis Ingestion: Irritation to mucous membranes.  6. n-Hexyl alcohol: May cause toxic effects if inhaled or absorbed through skin. |
|                                                            | Inhalation or contact with material may irritate or burn skin and eyes. Fire                                                                                 |
|                                                            | will produce irritating, corrosive and/or toxic gases. Vapors may cause                                                                                      |
|                                                            | dizziness or suffocation                                                                                                                                     |
| Principle                                                  | A stable dichlorosulfitomercurate complex, obtained by reaction between SO <sub>2</sub>                                                                      |
|                                                            | with potassium /sodium tetrachloromercurate is reacted with pararosaniline and                                                                               |
|                                                            | formaldehyde forms pararosaniline methyl sulfonic acid dye. It absorbance                                                                                    |
|                                                            | measured and sulphur dioxide is estimated.                                                                                                                   |
| Apparatus / Instruments                                    | General Glassware and apparatus (Refer 2.0 at page no. 2).                                                                                                   |
| Materials and Reagents                                     | 1. Alcoholic beverages                                                                                                                                       |
|                                                            | 2. p- Rosaniline HCl                                                                                                                                         |
|                                                            | 3. Hydrochloric acid (HCl)                                                                                                                                   |
|                                                            | 4. Formaldehyde (HCHO)                                                                                                                                       |
|                                                            | 5. Mercuric chloride (HgCl <sub>2</sub> )                                                                                                                    |
|                                                            | 6. Sodium chloride (NaCl)                                                                                                                                    |
|                                                            | 7. Sodium bisulphate (NaHSO <sub>3</sub> )                                                                                                                   |
|                                                            | 8. Iodine (I <sub>2</sub> )                                                                                                                                  |
|                                                            | 9. Sodium thiosulphate (Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> )                                                                                      |
|                                                            | 10. Starch                                                                                                                                                   |
|                                                            | 11. n-Hexyl alcohol                                                                                                                                          |

| Preparation of reagents  | 1. Colour reagent- Weigh 100 mg p- rosaniline HCl into 250 mL volumetric                                                 |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| 1 reparation of reagents | flask and dissolve in 200 mL H <sub>2</sub> O. Add 40 mL HCl (1+1), mix, and dilute to                                   |  |
|                          | volume with $H_2O$ . Let stand 15 min before use. Store in brown, glass-                                                 |  |
|                          | stoppered bottle in refrigerator.                                                                                        |  |
|                          | 2. Formaldehyde solution- Dilute 5 mL 40% HCHO solution to 1 L with H <sub>2</sub> O                                     |  |
|                          | and store in brown, glass-stoppered bottle in refrigerator.                                                              |  |
|                          | 3. Mercury stabilizing solution - Dissolve 27.2 g HgCl <sub>2</sub> and 11.7 g NaCl in                                   |  |
|                          | H <sub>2</sub> O and dilute to 1 L with H <sub>2</sub> O.                                                                |  |
|                          | Calibration                                                                                                              |  |
|                          | 4. Accurately weigh 250 mg NaHSO <sub>3</sub> into exactly 50 mL 0.1M I <sub>2</sub> solution in                         |  |
|                          | glass-stoppered flask. Let stand at room temperature for 5 min. Add 1 mL                                                 |  |
|                          | HCL, and titrate excess I <sub>2</sub> with 0.1M Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> , using 1% aqueous starch |  |
|                          | solution as indicator (1 mL 0.1M I <sub>2</sub> consumed= 3.203 mg SO <sub>2</sub> or 5.20 mg                            |  |
|                          | NaHSO <sub>3</sub> ). From results of NaHSO <sub>3</sub> assay, prepare solution containing 10 mg                        |  |
|                          | SO <sub>2</sub> /mL (ca 8.6-9.0 g NaHSO <sub>3</sub> /500mL) ( <i>Solution I</i> ).                                      |  |
|                          | 5. Transfer 100 mL Hg stabilizing solution to 500 mL glass-stoppered                                                     |  |
|                          | volumetric flask. Add 1.00 mL Solution I, and dilute to volume with H <sub>2</sub> O                                     |  |
|                          | volumetric mask. Add 1.00 life Solution I, and dridle to volume with $H_2O$ (1mL=20µg $SO_2$ ) (Solution II).            |  |
|                          | 6. Using 10 mL graduate containing 1 drop n-hexyl alcohol as antifoam,                                                   |  |
|                          | transfer 10 mL portions of cold, undigested beer (preferably of low SO <sub>2</sub> )                                    |  |
|                          | content) into series of eight 100mL volumetric flasks.                                                                   |  |
|                          | 7. To series add 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, and 8.0 mL Solution II                                               |  |
|                          | $(0-160 \mu g SO_2)$ . Dilute to volume with $H_2O$ , and mix.                                                           |  |
|                          | 8. Transfer 25 mL aliquots of each solution to separate 50 mL volumetric                                                 |  |
|                          | flasks. To each flask, add 5 mL color reagent. Mix, and add 5 mL HCHO                                                    |  |
|                          | solution. Mix, dilute to volume with H <sub>2</sub> O, mix, and hold in 25 °C water bath                                 |  |
|                          | 30 min.                                                                                                                  |  |
|                          | 9. Read colour in spectrophotometer at 550 nm or in photometer with green                                                |  |
|                          | filter.                                                                                                                  |  |
|                          | 10. Plot absorbance (A) as ordinate against μg SO <sub>2</sub> added to beer as abscissas                                |  |
|                          | (colour follows Beer's law over range).                                                                                  |  |
|                          | 11. Calculate calibration factor F, converting readings to µg SO <sub>2</sub> in 25 mL                                   |  |
|                          | aliquot used, or convert directly to μg/mL SO <sub>2</sub> .                                                             |  |
| Sample Preparation       | 1. Using pipets, add 2 mL Hg stabilizing solution and 5 mL 0.05M H <sub>2</sub> SO <sub>4</sub> to                       |  |
|                          | 100 mL volumetric flask.                                                                                                 |  |
|                          | 2. Measure 10 mL cold, undegassed beer into 10 mL graduate containing 1 drop                                             |  |
|                          | n-hexyl alcohol, and add to volume flask.                                                                                |  |
|                          | 3. Swirl gently, and add 15 mL 0.1M NaOH. Swirl, and hold 15 s.                                                          |  |
|                          | 4. Add 10 mL 0.05M H <sub>2</sub> SO <sub>4</sub> , then H <sub>2</sub> O to volume, and mix thoroughly. Transfer        |  |
|                          | 25 mL aliquot to 50 mL volumetric flask.                                                                                 |  |
| Method of Analysis       | 1. To solution in 50 mL volumetric flask, add dilute to volume with H <sub>2</sub> O.                                    |  |
|                          | 2. Mix, and hold in 25 °C bath 30 min.                                                                                   |  |
|                          | 3. Read colour as above, using cells of same size and same instrument settings.                                          |  |
|                          | 4. Correct for blank as follows: Measure 10 mL cold, undegassed beer into 100                                            |  |
|                          | mL volumetric flask.                                                                                                     |  |
|                          | 5. Add 0.5 mL 1% aqueous starch solution, then 0.05M I <sub>2</sub> solution, drop wise                                  |  |
|                          | until permanent bluish tinge persists. Add 1 drop more, dilute to volume, and                                            |  |
|                          | mix thoroughly. When blue fades, develop colour in 25 mL aliquots as above.                                              |  |
|                          | (Colour readings for I <sub>2</sub> blanks are usually low and uniform; when test is                                     |  |
|                          | performed on series of similar beers, blank tests on all may be unnecessary.)                                            |  |

| Calculation with units of expression | Sulphur dioxide $\left(\frac{\mu g}{mL}\right) = (A_s - A_b) \times F$<br>Where,<br>$A_s = A$ of test solution (or photometric reading with green filter equivalent to $A$ )<br>$A_b = A$ of $I_2$ blank, |  |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                      | F= factor derived from point no. 11 (Preparation of reagents) for converting A to $\mu$ g SO <sub>2</sub> in aliquot, or directly to $\mu$ g/mL SO <sub>2</sub> .                                         |  |
| Reference                            | AOAC 963.11-1964, Sulfur dioxide in beer. Colorimetric method                                                                                                                                             |  |
| Approved by                          | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                      |  |

|                                                                                                             | <b>Determination of Tannins (for Wines only)</b>                                                                                                                |  |  |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SSAT FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA                                                           |                                                                                                                                                                 |  |  |
| Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Government of India |                                                                                                                                                                 |  |  |
| Method No.                                                                                                  | FSSAI 13.031:2021                                                                                                                                               |  |  |
| Scope                                                                                                       | Spectrophotometric Method - This method is useful for the determination of                                                                                      |  |  |
|                                                                                                             | tannins present in alcoholic beverages.                                                                                                                         |  |  |
| Caution                                                                                                     | 1. Sodium tungstate: Acute oral toxicity.                                                                                                                       |  |  |
|                                                                                                             | 2. Phosphomolybdic acid: Contact with skin causes irritation and possible burns,                                                                                |  |  |
|                                                                                                             | especially if the skin is wet or moist. May be harmful if absorbed through the skin. Ingestion: May cause severe gastrointestinal tract irritation with nausea, |  |  |
|                                                                                                             | vomiting and possible burns. Inhalation: May cause burns to the respiratory                                                                                     |  |  |
|                                                                                                             | tract.                                                                                                                                                          |  |  |
|                                                                                                             | 3. Sodium Carbonate: Eye contact can cause permanent corneal injury and                                                                                         |  |  |
|                                                                                                             | possible burns. Avoid ingestion or inhalation of dust. Due to these potential                                                                                   |  |  |
|                                                                                                             | hazards, sodium carbonate should be handled with care.                                                                                                          |  |  |
|                                                                                                             | 4. Phosphoric acid: Repeated or prolonged exposure to phosphoric acid mist can                                                                                  |  |  |
|                                                                                                             | lead to chronic eye irritation, severe skin irritation, or prolonged respiratory tract issues.                                                                  |  |  |
|                                                                                                             | 5. Tannic acid: Very large amounts of tannic acid can cause stomach irritation,                                                                                 |  |  |
|                                                                                                             | nausea, and vomiting. When applied to the skin: Tannic acid is possibly                                                                                         |  |  |
|                                                                                                             | unsafe when applied to skin that is tender or damaged.                                                                                                          |  |  |
| Principle                                                                                                   | Tannins present in alcoholic beverages reacts with Folin - Dennis reagent and                                                                                   |  |  |
|                                                                                                             | forms coloured solutions. The absorbance of these colored solutions are                                                                                         |  |  |
|                                                                                                             | measured and tannin quantity is determined.                                                                                                                     |  |  |
| Apparatus /Instruments                                                                                      | 1. General Glassware and apparatus (Refer 2.0 at page no. 2).                                                                                                   |  |  |
|                                                                                                             | 2. Spectrophotometer, Double beam with a working wavelength range of 350-                                                                                       |  |  |
| Motorials and Descents                                                                                      | 800 nm and band width 5 nm.  1. Alcoholic beverages                                                                                                             |  |  |
| Materials and Reagents                                                                                      | 2. Sodium tungstate (Na <sub>2</sub> WO <sub>4</sub> .2H <sub>2</sub> O)                                                                                        |  |  |
|                                                                                                             | 3. Phosphomolybdic acid                                                                                                                                         |  |  |
|                                                                                                             | 4. Phosphoric acid                                                                                                                                              |  |  |
|                                                                                                             | 5. Anhydrous Sodium carbonate                                                                                                                                   |  |  |
|                                                                                                             | 6. Tannic acid                                                                                                                                                  |  |  |
| Preparation of reagents                                                                                     | 1. Preparation of Folin - Dennis reagent - Prepare by adding 100 g Sodium                                                                                       |  |  |
|                                                                                                             | tungstate (Na <sub>2</sub> WO <sub>4</sub> .2H <sub>2</sub> O), 20 g Phosphomolybdic acid and 50 mL                                                             |  |  |
|                                                                                                             | phosphoric acid to 750 mL water and reflux for 2 h and dilute to 1 L.  2. Preparation of Sodium carbonate solution—Prepare by adding 35 g anhydrous             |  |  |
|                                                                                                             | Sodium carbonate to 100 mL water at about 80 °C. Allow to cool overnight                                                                                        |  |  |
|                                                                                                             | and seed with few crystals of sodium carbonate. Filter.                                                                                                         |  |  |
|                                                                                                             | 3. Preparation of standard Tannic acid solution – Prepare fresh daily, by                                                                                       |  |  |
|                                                                                                             | dissolving 100 mg Tannic acid in 1000 mL water.                                                                                                                 |  |  |
|                                                                                                             | (1  mL = 0.1  mg of tannic acid).                                                                                                                               |  |  |
| Method of Analysis                                                                                          | Preparation of standard curve                                                                                                                                   |  |  |
|                                                                                                             | 1. Pipette 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 mL of standard tannic acid solution into                                                                             |  |  |
|                                                                                                             | <ul><li>100 mL volumetric flasks containing 75 mL water.</li><li>2. Add 5 mL Folin - Dennis reagent and 10 mL sodium carbonate solution.</li></ul>              |  |  |
|                                                                                                             | Make up to volume.                                                                                                                                              |  |  |
|                                                                                                             | 3. Mix well and after 30 min. determine absorbance of each standard using                                                                                       |  |  |
|                                                                                                             | reagent blank.                                                                                                                                                  |  |  |

|                           | 4. Plot absorbance against mg of tannic acid and use the graph for the                   |  |  |
|---------------------------|------------------------------------------------------------------------------------------|--|--|
|                           | determination of concentration of tannin in wine.                                        |  |  |
|                           | Determination                                                                            |  |  |
|                           | 5. Pipette 1 mL of wine into a 100 mL volumetric flask containing about 80 mL water.     |  |  |
|                           | 6. Add 5 mL Folin-Dennis reagent and 10 mL sodium carbonate solution. Make up to volume. |  |  |
|                           | 7. Mix well and after 30 min, against reagent blank read the absorbance.                 |  |  |
|                           | 8. If the absorbance is beyond 0.8, dilute the solution 1:4 times and read.              |  |  |
| Calculation with units of | Obtain the mg of tannic acid using the standard curve and calculate to express           |  |  |
| expression                | the value in g/L of wine.                                                                |  |  |
| Reference                 | 1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test                         |  |  |
|                           | 2. IS Standard – IS 7585:1995, Wines, Methods of Analysis                                |  |  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                                     |  |  |



#### **Determination of Extracts in Wines**

| Inspiring Trust, Assuring Safe & Nutritious Food<br>Ministry of Health and Family Welfare, Government of India |                                                                                                                                                                 |                                                                                 |     |  |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----|--|
| Method No.                                                                                                     | FSSAI 13.032:2021                                                                                                                                               | Revision No. & Date                                                             | 0.0 |  |
| Scope                                                                                                          | Evaporation Method – T                                                                                                                                          | Evaporation Method – This method is useful to determine the extracts present in |     |  |
|                                                                                                                | alcoholic beverages.                                                                                                                                            |                                                                                 |     |  |
| Principle                                                                                                      | Extracts are estimated by evaporating the known quantity of the sample of wine                                                                                  |                                                                                 |     |  |
|                                                                                                                | on a steam bath                                                                                                                                                 |                                                                                 |     |  |
| Apparatus / Instruments                                                                                        | 1. General Glassware and apparatus (Refer 2.0 at page no. 2).                                                                                                   |                                                                                 |     |  |
|                                                                                                                | 2. Pipette, 50 mL.                                                                                                                                              |                                                                                 |     |  |
|                                                                                                                | 3. Evaporating dishes, aluminum, flat bottom with lids, 75 mL capacity.                                                                                         |                                                                                 |     |  |
|                                                                                                                | 4. Oven- calibrated to maintain temperature of $100 \pm 2$ °C.                                                                                                  |                                                                                 |     |  |
|                                                                                                                | 5. Steam bath.                                                                                                                                                  |                                                                                 |     |  |
|                                                                                                                | 6. Desiccators.                                                                                                                                                 |                                                                                 |     |  |
|                                                                                                                | 7. Electronic balance, 0.1 mg sensitivity                                                                                                                       |                                                                                 |     |  |
| Materials and Reagents                                                                                         | Ŭ                                                                                                                                                               | Alcoholic beverages                                                             |     |  |
| Method of Analysis                                                                                             | 1. Weigh, dried and cooled aluminum dish (W <sub>1</sub> ).                                                                                                     |                                                                                 |     |  |
|                                                                                                                | 2. Mix the wine sample well and draw 50 mL sample (dry wines) or 25 mL                                                                                          |                                                                                 |     |  |
|                                                                                                                | sample (sweet wines) into the aluminum dish and evaporate on steam bath to                                                                                      |                                                                                 |     |  |
|                                                                                                                | almost dryness.  Transfer the dish to an air even maintained at 100 °C and dry for 4.5 h                                                                        |                                                                                 |     |  |
|                                                                                                                | 3. Transfer the dish to an air oven maintained at 100 °C and dry for 4-5 h.                                                                                     |                                                                                 |     |  |
|                                                                                                                | <ul> <li>4. Remove the dish and cool in a desiccator and weigh to constant weight (W<sub>2</sub>).</li> <li>5. Calculate the extract in g/L of wine.</li> </ul> |                                                                                 |     |  |
| Calculation with units of                                                                                      |                                                                                                                                                                 |                                                                                 |     |  |
|                                                                                                                | Extract $\left(\frac{g}{L}\right) = \frac{\left[\left(W_2 - W_1\right) \times 1000\right]}{\text{Volume of sample}}$                                            |                                                                                 |     |  |
| expression                                                                                                     | _                                                                                                                                                               |                                                                                 |     |  |
|                                                                                                                | W <sub>1</sub> – Weight of empty aluminum dish                                                                                                                  |                                                                                 |     |  |
| D. C.                                                                                                          |                                                                                                                                                                 | W <sub>2</sub> - Weight of aluminum dish with extract residue.                  |     |  |
| Reference                                                                                                      | 1. IS Standard – IS 3752:2005, Alcoholic Drinks, Methods of Test                                                                                                |                                                                                 |     |  |
|                                                                                                                | 2. IS Standard – IS 7585:1995, Wines, Methods of Analysis                                                                                                       |                                                                                 |     |  |
| Approved by                                                                                                    | Scientific Panel on Methods of Sampling and Analysis                                                                                                            |                                                                                 |     |  |

|                                                                                                                | Determination of Sorbic Acid                                                                                                                                                |  |  |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| food safety and standards authority of india                                                                   |                                                                                                                                                                             |  |  |
| Inspiring Trust, Assuring Safe & Nutritious Food<br>Ministry of Health and Family Welfare, Government of India |                                                                                                                                                                             |  |  |
| Method No.                                                                                                     | FSSAI 13.033:2021                                                                                                                                                           |  |  |
| Scope                                                                                                          | Spectrophotometric method – This method is useful to determine sorbic acid                                                                                                  |  |  |
| C4:                                                                                                            | present in alcoholic beverages.                                                                                                                                             |  |  |
| Caution                                                                                                        | Hydrochloric acid: Hydrochloric acid is a hazardous liquid which must be used with care. The acid itself is corrosive, and concentrated forms release acidic mists that are |  |  |
|                                                                                                                | also dangerous. If the acid or mist come into contact with the skin, eyes, or internal                                                                                      |  |  |
|                                                                                                                | organs, the damage can be irreversible or even fatal in severe cases.                                                                                                       |  |  |
| Principle                                                                                                      | Sorbic acid (2,4-hexadienoic acid) shows UV absorbance at 260 nm due to its                                                                                                 |  |  |
|                                                                                                                | inherent conjugation system present in the molecule. This absorbance is used for                                                                                            |  |  |
|                                                                                                                | its quantification.                                                                                                                                                         |  |  |
| Apparatus / Instruments                                                                                        | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>Cash Electric still.</li> </ol>                                                                |  |  |
|                                                                                                                | 2. Cash Electric stiff. 3. UV Spectrophotometer                                                                                                                             |  |  |
| Materials and Reagents                                                                                         | Alcoholic beverages.                                                                                                                                                        |  |  |
|                                                                                                                | 2. Hydrochloric acid.                                                                                                                                                       |  |  |
|                                                                                                                | 3. Potassium sorbate.                                                                                                                                                       |  |  |
| Preparation of reagents                                                                                        | 1. Hydrochloric acid - 0.1M. Dilute 8.2 mL HCl to 1 L with H <sub>2</sub> O.                                                                                                |  |  |
|                                                                                                                | 2. Sorbic acid standard solution - 1.0 mg/mL. Accurately weigh 1.340 g                                                                                                      |  |  |
|                                                                                                                | potassium sorbate (equivalent to 1.000 g sorbic acid) in 1 L volumetric flask, and dissolve and dilute to volume with H <sub>2</sub> O. Solution is stable several days     |  |  |
|                                                                                                                | when refrigerated.                                                                                                                                                          |  |  |
| Method of analysis                                                                                             | Preparation of Standard Curve                                                                                                                                               |  |  |
| ·                                                                                                              | 1. Pipet 0, 10, 20, 30, and 40 mL sorbic acid standard solution into separate 100                                                                                           |  |  |
|                                                                                                                | mL volumetric flasks, and dilute to volume with H <sub>2</sub> O.                                                                                                           |  |  |
|                                                                                                                | 2. Pipet 2 mL of each solution into different 200 mL volumetric flasks and, add                                                                                             |  |  |
|                                                                                                                | <ul> <li>0.5 mL 0.1M HCl, and dilute to volume with H<sub>2</sub>O.</li> <li>3. Read A at 260 nm in 1 cm cell and plot A against concentration.</li> </ul>                  |  |  |
|                                                                                                                | Determination.                                                                                                                                                              |  |  |
|                                                                                                                | 4. Pipet 2 mL wine into Cash still.                                                                                                                                         |  |  |
|                                                                                                                | 5. Rinse in with 2–3 mL H <sub>2</sub> O.                                                                                                                                   |  |  |
|                                                                                                                | 6. Steam-distill into 200 mL volumetric flask containing 0.5 mL 0.1M HCl.                                                                                                   |  |  |
|                                                                                                                | 7. Collect ca 190 mL distillate; dilute to volume with H <sub>2</sub> O.                                                                                                    |  |  |
| Colombation with swite of                                                                                      | 8. Read A at 260 nm in 1 cm cell.                                                                                                                                           |  |  |
| Calculation with units of expression                                                                           | Determine concentration from standard plot/ curve.                                                                                                                          |  |  |
| Reference                                                                                                      | 1. Determination of sorbic acid AOAC, 974.08                                                                                                                                |  |  |
|                                                                                                                | 2. Determination of sorbic acid in wine; Arthur Caputi, Masao Ueda, Bruno                                                                                                   |  |  |
|                                                                                                                | Trombella; Journal of Association of Official Analytical Chemists, Volume                                                                                                   |  |  |
|                                                                                                                | 57, Issue 4, 1 July 1974, Pages 951–953                                                                                                                                     |  |  |
|                                                                                                                | 3. Collaborative Study of the Determination of sorbic acid in wine; Arthur Caputi,                                                                                          |  |  |
|                                                                                                                | Jr, Karen Slinkard; Journal of Association of Official Analytical Chemists, Volume                                                                                          |  |  |
| Annroyad by                                                                                                    | 58, Issue 1, 1 January 1975, Pages 133–135, https://doi.org/10.1093/jaoac/58.1.133                                                                                          |  |  |
| Approved by                                                                                                    | Scientific Panel on Methods of Sampling and Analysis                                                                                                                        |  |  |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Wellers, Covernment of India | Determination of Reducing Sugar - Lane and Eynon (Fehling)  Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Method No.                                                                                                                                               | FSSAI 13.034:2021 <b>Revision No. &amp; Date</b> 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Scope                                                                                                                                                    | Lane and Eynon (Fehling) Method –This method is useful to determine reduci sugars present in alcoholic beverages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Caution                                                                                                                                                  | <ol> <li>Copper sulphate: Copper sulfate can cause severe eye irritation. Eating large amounts of copper sulfate can lead to nausea, vomiting, and damage to body tissues, blood cells, the liver, and kidneys.</li> <li>Sulphuric acid: Concentrated sulfuric acid is extremely corrosive and can cause serious burns when not handled properly. This chemical is unique because it not only causes chemical burns, but also secondary thermal burns as a result of dehydration. This dangerous chemical is capable of corroding skin, paper, metals, and even stone in some cases. If sulfuric acid makes direct contact with the eyes, it can cause permanent blindness. If ingested, this chemical may cause internal burns, irreversible organ damage, and possibly death.</li> <li>Potassium sodium tartrate: May cause irritation to skin, eyes, and respiratory tract. Inhalation: may cause irritation to the respiratory tract.</li> <li>Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It can cause severe burns and permanent damage to any tissue that it comes in contact with. Sodium hydroxide can cause hydrolysis of proteins, and hence can cause burns in the eyes which may lead to permanent eye damage.</li> <li>Lead acetate: may be fatal if swallowed, inhaled or absorbed through skin. Suspect cancer hazard. May cause cancer. Risk of cancer depends on level and duration of exposure. Causes irritation to skin, eyes and respiratory tract. Neurotoxin. Affects the gum tissue, central nervous system, kidneys, blood and reproductive system.</li> <li>Acetic acid: Acetic acid can be a hazardous chemical if not used in a safe and appropriate manner. This liquid is highly corrosive to the skin and eyes and, because of this, must be handled with extreme care. Acetic acid can also be damaging to the internal organs if ingested or in the case of vapor inhalation.</li> <li>Disodium hydrogen phosphate: Causes mild skin irritation; Causes eye irritation.</li> <li>Benzoic acid: Immediately or shortly after exp</li></ol> |  |  |
| Principle                                                                                                                                                | Known quantity of Fehling (Soxhlet) solution titrated with dextrose solution and used quantity is determined. Known quantity of Fehling solution is taken and known quantity of clarified wine is added and titrated with dextrose solution and used quantity is determined. The difference in the quantities of dextrose used will provide the reducing sugar present in wine.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Apparatus / Instruments                                                                                                                                  | General Glassware and apparatus (Refer 2.0 at page no. 2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Materials and Reagents                                                                                                                                   | <ol> <li>Alcoholic beverages</li> <li>Copper sulphate</li> <li>Sulphuric acid (conc. H<sub>2</sub>SO<sub>4</sub>)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

|                                       | 4. Rochelle salt (Potassium sodium tartarate)                                                                                |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                       | 5. Sodium hydroxide                                                                                                          |  |  |
|                                       | 6. Lead acetate                                                                                                              |  |  |
|                                       | 7. Glacial acetic acid                                                                                                       |  |  |
|                                       | 8. Disodium hydrogen phosphate (Na <sub>2</sub> HPO <sub>4</sub> )                                                           |  |  |
|                                       | 9. Methylene blue                                                                                                            |  |  |
|                                       | 10. Anhydrous dextrose                                                                                                       |  |  |
|                                       | 11. Benzoic acid                                                                                                             |  |  |
| Preparation of reagents               | Soxhlet solution                                                                                                             |  |  |
| · · · · · · · · · · · · · · · · · · · | 1. Solution A - Dissolve 34.639 g of copper sulphate in water, add 0.5 mL of                                                 |  |  |
|                                       | conc. H <sub>2</sub> SO <sub>4</sub> and dilute to 500 mL. Filter the solution.                                              |  |  |
|                                       | 2. Solution B - Dissolve 173 g of Rochelle salt (Potassium sodium tartarate) and                                             |  |  |
|                                       | 50 g of sodium hydroxide dilute to 500 mL and allow the solution to stand for                                                |  |  |
|                                       | 2 days. Filter the solution.                                                                                                 |  |  |
|                                       | 3. Mix equal amounts of solution A and solution B.                                                                           |  |  |
|                                       | 4. Lead acetate solution (Saturated and neutral).                                                                            |  |  |
|                                       | 5. Methylene blue solution - 0.05 g of Methylene blue is dissolved in 100 mL                                                 |  |  |
|                                       | water.                                                                                                                       |  |  |
|                                       | Standard invert sugar solution                                                                                               |  |  |
|                                       | 6. Stock solution of dextrose – Anhydrous dextrose (10 g) dissolved in water in                                              |  |  |
|                                       | a 1 L graduated flask. Benzoic acid (2.5 g) is added and dissolved while                                                     |  |  |
|                                       | shaking. Make up the volume to the mark with water. This solution is                                                         |  |  |
|                                       | prepared daily.                                                                                                              |  |  |
|                                       | 7. Standard dextrose solution – Dilute known amount of dextrose stock solution                                               |  |  |
|                                       | (6) to such a concentration that more than 15 mL but less than 50 mL of it                                                   |  |  |
|                                       | will be required to reduce all the copper in the Fehling solution taken for                                                  |  |  |
|                                       | titration. Note the concentration of anhydrous dextrose in the solution as mg                                                |  |  |
|                                       | per 100 mL. Prepare this solution every day.                                                                                 |  |  |
|                                       | 8. Sodium Hydroxide – 1 normal solution.                                                                                     |  |  |
|                                       | Preparation of control                                                                                                       |  |  |
|                                       | 9. Pipette 25 mL of Soxhlet reagent into a 250 mL flask. Add 10 mL of 0.5%                                                   |  |  |
|                                       | standard invert sugar solution, bring it to boil in 3 min and keep it boiling for                                            |  |  |
|                                       | 3 min (use glass beads to prevent bumping). Add 5 drops of methylene blue                                                    |  |  |
|                                       | indicator and titrate the solution while still hot with standard 0.5% invert                                                 |  |  |
|                                       | sugar till faint blue and then add dropwise until the solution is reddish in                                                 |  |  |
| G I B "                               | colour.                                                                                                                      |  |  |
| Sample Preparation                    | De-alcoholization and Decolourization of Wine Sample                                                                         |  |  |
|                                       | 1. Take 100 mL of wine sample in a porcelain dish.                                                                           |  |  |
|                                       | 2. Exactly neutralize with sodium hydroxide calculating the acidity and                                                      |  |  |
|                                       | evaporate to 50 mL.  To this add 5 mL of lead accepta solution, anough activated abarracel and 2.                            |  |  |
|                                       | 3. To this add 5 mL of lead acetate solution, enough activated charcoal and 2                                                |  |  |
|                                       | drops of glacial acetic acid.  4. Make the volume to 100 mL with distilled water. Filter this mixture into 2 g.              |  |  |
|                                       | 4. Make the volume to 100 mL with distilled water. Filter this mixture into 2 g                                              |  |  |
| Mathad of Analysis                    | of disodium hydrogen phosphate in a beaker.  1. Pipette 20 mL of the clarified wine into an Erlen mover flack containing 25. |  |  |
| Method of Analysis                    | 1. Pipette 20 mL of the clarified wine into an Erlen-meyer flask containing 25 mL of Soyblet reagent                         |  |  |
|                                       | mL of Soxhlet reagent.  2. Bring it to holl and titrate with 0.5% invert cugar with methylane blue.                          |  |  |
|                                       | 2. Bring it to boil and titrate with 0.5% invert sugar, with methylene blue indicator to a brick red and point               |  |  |
| Calculation with units of             | indicator, to a brick red end point.  Calculate the reducing sugar from the standard tables.                                 |  |  |
|                                       | Calculate the reducing sugar from the standard tables.                                                                       |  |  |
| expression                            | 1                                                                                                                            |  |  |

| Reference   | IS Standard – IS 7585:1995, Wines, Methods of Analysis |  |  |
|-------------|--------------------------------------------------------|--|--|
| Approved by | Scientific Panel on Methods of Sampling and Analysis   |  |  |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Government of India | Determination of I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Reducing Sugar – Dinitrosali                                                                                             | cylic Acid Method                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Method No.                                                                                                                                               | FSSAI 13.035:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Revision No. & Date                                                                                                      | 0.0                                                                         |
| Scope                                                                                                                                                    | Reducing sugars (contain free carbonyl group) have the property to reduce many of the reagents. Dinitrosalicylic acid (DNS) is one such reagent. This method is useful to determine reducing sugars present in alcoholic beverages using dinitrosalicylic acid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                          |                                                                             |
| Caution                                                                                                                                                  | <ol> <li>Potassium sodium tartarate: May cause irritation to skin, eyes, and respiratory tract. Inhalation: may cause irritation to the respiratory tract.</li> <li>Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It can cause severe burns and permanent damage to any tissue that it comes in contact with. Sodium hydroxide can cause hydrolysis of proteins, and hence can cause burns in the eyes which may lead to permanent eye damage.</li> <li>3,5-Dinitrosalicylic acid: Causes eye burns. Harmful if absorbed through the skin. Causes skin burns. Harmful if swallowed. Causes gastrointestinal tract burns. Harmful if inhaled. Causes chemical burns to the respiratory tract. Chronic exposure may cause effects similar to those of acute exposure.</li> <li>Phenol: Phenol can pose a severe health hazard and should be handled with extreme caution. Phenol is highly corrosive to the skin and readily absorbed through it, whereupon it can affect the central nervous system and cause damage to the liver and kidneys. It is also a mutagen, and there is some evidence that phenol may be a reproductive hazard. When heated, phenol will produce flammable vapors that are highly toxic (at just a few parts per million) and explosive (at concentrations of 3% to 10% in air).</li> <li>Sodium sulphite: Dust or mist may cause skin irritation from prolonged contact. Solutions will cause skin irritation. Inhalation of dust may cause coughing and sneezing. Ingestion may result in irritation of the mouth and</li> </ol> |                                                                                                                          |                                                                             |
| Principle                                                                                                                                                | gastrointestinal tract  When alkaline solution of 3,5-dinitrosalicylic acid reacts with reducing sugars (e.g. Glucose, lactose.), it is converted into 3-amino-5-nitrosalicylic acid with orange color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                                                             |
| Apparatus                                                                                                                                                | General Glassware and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | l apparatus (Refer 2.0 at page 17-Visible (variable wavelength                                                           |                                                                             |
| Materials and reagents                                                                                                                                   | <ol> <li>Alcoholic beverages</li> <li>Sodium potassium tart</li> <li>3,5-Dinitrosalicylic aci</li> <li>Sodium hydroxide</li> <li>Phenol – Crystalline</li> <li>Sodium sulphite</li> <li>Glucose (Standard)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                          |                                                                             |
| Preparation of reagents                                                                                                                                  | (100 mL) 2. Dinitrosalicyclic acid dinitrolsalicyclic acid, in 100 mL 1% NaOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | reagent (DNS Reagent): D<br>200 mg crystalline phenol an<br>H. Store at 4 °C in amber b<br>odium sulphite, if long store | pissolve by stirring 1 g d 50 mg sodium sulphite oottle. Since, the reagent |

|                           | sulphite may be added at the time of use.                                          |  |  |
|---------------------------|------------------------------------------------------------------------------------|--|--|
|                           | 3. Rochelle salt solution (Potassium sodium tartrate - 40%): Dissolve potassium    |  |  |
|                           | sodium tartrate (40 g) in distilled water (100 mL).                                |  |  |
| Sample Preparation        | 1. Stock standard Glucose solution: Glucose solutions of different                 |  |  |
|                           | concentrations are obtained by dilutions from a stock solution of 2 g/L.           |  |  |
|                           | 2. Working standard Glucose solution: Stock standard Glucose solution (10 mL)      |  |  |
|                           | is diluted to 100 mL.                                                              |  |  |
| Method of Analysis        | 1. Take 100 mL of alcoholic beverage and remove alcohol completely by              |  |  |
| _                         | distillation on water bath at 80 °C. Note down the weight (A mg) of the            |  |  |
|                           | residue                                                                            |  |  |
|                           | 2. Weigh 100 mg of the sample (residue) and extract the sugars with hot 80%        |  |  |
|                           | ethanol twice (5 mL each time)                                                     |  |  |
|                           | 3. Collect the supernatant and evaporate it by keeping it on a water bath at 80    |  |  |
|                           | °C                                                                                 |  |  |
|                           | 4. Add 10 mL water and dissolve the sugars                                         |  |  |
|                           | 5. Pipette out 0.5 to 3 mL of the extract in test tubes and equalize the volume to |  |  |
|                           | 3 mL with water in all the tubes.                                                  |  |  |
|                           | 6. Add 3 mL of DNS reagent.                                                        |  |  |
|                           | 7. Heat the contents in a boiling water bath for 5 min.                            |  |  |
|                           | 8. When the contents of the tubes are still warm, add 1mL of 40% Rochelle salt     |  |  |
|                           | solution.                                                                          |  |  |
|                           | 9. Cool to room temperature make up to 7 mL with distilled water.                  |  |  |
|                           | 10. Read the intensity of dark red colour at 510 nm.                               |  |  |
|                           | 11. Run a series of standards using glucose (0 to 500 µg) and plot a calibration   |  |  |
|                           | graph.                                                                             |  |  |
|                           | 12. Calculate the reduced sugars (B μg) using calibration curve present in C mL    |  |  |
|                           | of residue solution.                                                               |  |  |
| Calculation with units of | 1. Reducing sugars present in 10 mL of residue solution (reducing sugars           |  |  |
| expression                | present in 100 mg of the residue sample) = $10 \times B/C$                         |  |  |
|                           | 2. Reducing sugars present in 100 mL of alcoholic beverage (total residue i.e.,    |  |  |
|                           | A mg)= $\frac{A \times 10 \times B}{100 \times C}$ (in micro grams)                |  |  |
|                           | A – Weight of residue from 100 mL of beverage.                                     |  |  |
|                           | B –Weight of reduced sugars from C mL of residue solution.                         |  |  |
| Reference                 | Miller, G. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of       |  |  |
|                           | Reducing Sugar. Analytical Chemistry 31, pp. 426-428                               |  |  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                               |  |  |
|                           |                                                                                    |  |  |

|                                                                                               | Determination of Individual Sugars - HPLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                              |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------|
| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Mutritious Food |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                              |
| Ministry of Health and Family Welfare, Government of India  Method No.                        | FSSAI 13.036:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Revision No. & Date             | 0.0                          |
| Scope                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vidual sugars in alcoholic      | 1                            |
| F                                                                                             | Performance Liquid Chromatography with refractive index detector.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                              |
| Principle                                                                                     | Retention times of indiversity refractive index.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | vidual sugars in HPLC are di    | fferent. All sugars show     |
| Apparatus / Instruments                                                                       | General Glassware an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d apparatus (Refer 2.0 at page  | no. 2).                      |
|                                                                                               | 2. HPLC with RI Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                               |                              |
| 17                                                                                            | 3. Hi-Plex H column (7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 × 300 mm).                    |                              |
| Materials and Reagents                                                                        | <ol> <li>Alcoholic beverages</li> <li>Ethanol</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |                              |
|                                                                                               | 3. Glucose (Extra Pure)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                              |
|                                                                                               | 4. Fructose (analytical re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eagent)                         |                              |
|                                                                                               | 5. Sucrose (analytical real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                               |                              |
| Preparation of reagents                                                                       | 6. Distilled deionized wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | undard sugar solutions       |
| 1 reparation of reagents                                                                      | <ol> <li>Stock Standard sugar solutions: Prepare 5% stock standard sugar solutions.</li> <li>Working standard sugar solution: Dilute the stock standard sugar solution to</li> </ol>                                                                                                                                                                                                                                                                                                                                       |                                 |                              |
|                                                                                               | working standard sugar solutions (1%).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                              |
| Samples Preparation                                                                           | 1. Extract sugars from Alcoholic beverages using methanol (80%) in ethanol                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                              |
|                                                                                               | for 90 min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                              |
| Method of Analysis                                                                            | <ol> <li>Dilute working standard sugar solutions to Standard solutions of glucose, fructose, and sucrose from 0.03% (w/w) to 0.2% (w/w) for preparation of calibration curves.</li> <li>Inject these solutions to HPLC under the following conditions.</li> <li>Note the retention time of each standard sugar.</li> <li>Prepare calibration curves using the concentration of sugars (x-axis) vs detector response (y-axis).</li> </ol>                                                                                   |                                 |                              |
|                                                                                               | <ul> <li>Note: The limit of detection (%, w/w) and recovery (%) of the individual sugars by the HPLC-RI method were fructose 0.001, 89.4–106; glucose 0.002, 92.4–109; and sucrose 0.002, 94.2–95.1.</li> <li>5. Inject test samples of sugar solutions to HPLC as per the conditions used for the preparation of calibration curves.</li> <li>6. Note detector responses for each peak.</li> <li>7. Make triplicate injections and calculate average detector response for each peak.</li> <li>HPLC conditions</li> </ul> |                                 |                              |
|                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                              |
|                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                              |
|                                                                                               | 1. Mobile phase: Distille 2. Mobile phase flow rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                              |
|                                                                                               | <ul> <li>2. Mobile phase flow rate: 0.5 mL/min.</li> <li>3. Sample injection volumes: 10 μL.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                              |
|                                                                                               | 4. Column temperature : 35 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                              |
| Calculation with units of                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h sugar using detector response | e (average of triplicate) of |
| expression                                                                                    | the respective peak and c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | alibration curve.               |                              |
|                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                              |

| Reference   | Improvement in Analytical Methods for Determination of Sugars in Fermented |
|-------------|----------------------------------------------------------------------------|
|             | Alcoholic Beverages; Ayalew Debebe, Shibru Temesgen, Mesfin Redi-Abshiro,  |
|             | Bhagwan Singh Chandravanshi ,and Estifanos Ele; Journal of Analytical      |
|             | Methods in Chemistry; Volume 2018, Article ID 4010298, 10 pages;           |
|             | https://doi.org/10.1155/2018/4010298                                       |
| Approved by | Scientific Panel on Methods of Sampling and Analysis                       |

| FOOD SAFETY AND STANDARDS  Inspiring Trust, Assuring Safe & Nutritious Food  Ministry of Health and Family Welfare, Government of India | Determination of Total Sugar – Fehling Solution Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method No.                                                                                                                              | FSSAI 13.037:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Scope                                                                                                                                   | The presence of added sucrose can be detected by determining sugars before and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                         | after inversion by copper- reduction methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Caution                                                                                                                                 | <ol> <li>Copper sulphate: Copper sulfate can cause severe eye irritation. Eating large amounts of copper sulfate can lead to nausea, vomiting, and damage to body tissues, blood cells, the liver, and kidneys.</li> <li>Hydrochloric acid: Hydrochloric acid is a hazardous liquid which must be used with care. The acid itself is corrosive, and concentrated forms release acidic mists that are also dangerous. If the acid or mist come into contact with the skin, eyes, or internal organs, the damage can be irreversible or even fatal in severe cases.</li> <li>Potassium sodium tartrate: May cause irritation to skin, eyes, and respiratory tract. Inhalation: may cause irritation to the respiratory tract.</li> <li>Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It can cause severe burns and permanent damage to any tissue that it comes in contact with. Sodium hydroxide can cause hydrolysis of proteins, and hence can cause burns in the eyes which may lead to permanent eye damage.</li> <li>Lead acetate: may be fatal if swallowed, inhaled or absorbed through skin. Suspect cancer hazard. May cause cancer. Risk of cancer depends on level and duration of exposure. Causes irritation to skin, eyes and respiratory tract. Neurotoxin. Affects the gum tissue, central nervous system, kidneys, blood and reproductive system.</li> <li>Sodium oxalate: Like several other oxalates, sodium oxalate is toxic to humans. It can cause burning pain in the mouth, throat and stomach, bloody vomiting, headache, muscle cramps, cramps and convulsions, drop in blood pressure, heart failure, shock, coma, and possible death.</li> <li>Potassium oxalate: Harmful if swallowed. Causes eye, skin, and respiratory</li> </ol> |
|                                                                                                                                         | tract irritation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Principle                                                                                                                               | Fehling solution is standardized using standard dextrose solution. First reducing sugars are estimated in the alcoholic beverage. Later, Alcoholic beverage is inverted and total sugars are estimated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Apparatus / Instruments                                                                                                                 | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>Amber coloured bottles.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Materials and Reagents                                                                                                                  | 1. Alcoholic beverages 2. Copper sulphate (CuSO <sub>4</sub> .5H <sub>2</sub> O) 3. Rochelle salt (potassium sodium tartrate) (KNaC <sub>4</sub> H <sub>4</sub> O <sub>6</sub> .4H <sub>2</sub> O). 4. Hydrochloric acid 5. Sodium hydroxide 6. Lead acetate 7. Potassium or sodium oxalate 8. Phenolphthalein indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Preparation of reagents                                                                                                                 | <ol> <li>Fehling A: Dissolve 69.28 g copper sulphate (CuSO<sub>4</sub>.5H<sub>2</sub>O) in distilled water. Dilute to 1000 mL. Filter and store in amber coloured bottle.</li> <li>Fehling B: Dissolve 346 g Rochelle salt (potassium sodium tartrate) (K Na C<sub>4</sub>H<sub>4</sub>O<sub>6</sub>.4H<sub>2</sub>O) and 100 g NaOH in distilled water. Dilute to 1000 mL. Filter and store in amber coloured bottle.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|                    | 3. Satu | rotad nautral I                                                                                                                                     | and nantata colution      |                                      |
|--------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|
| Comple Duenoustion |         | <ul><li>3. Saturated neutral Lead acetate solution.</li><li>1. Transfer test sample representing about 2-2.5 g sugar to 200 mL volumetric</li></ul> |                           |                                      |
| Sample Preparation |         | flask, dilute to about 100 mL.                                                                                                                      |                           |                                      |
|                    |         |                                                                                                                                                     |                           | ate solution (about 2 mL is usual)   |
|                    |         | 2. Add excess of saturated neutral Lead acetate solution (about 2 mL is usually enough).                                                            |                           |                                      |
|                    | _       |                                                                                                                                                     | ne and filter discarding  | g the first few mL filtrate.         |
|                    |         |                                                                                                                                                     |                           | to precipitate excess lead used in   |
|                    |         | -                                                                                                                                                   | nd filter, discarding the | • •                                  |
|                    |         |                                                                                                                                                     |                           | inc acetate is preferable instead    |
|                    |         |                                                                                                                                                     | um oxalate, due to safet  | •                                    |
| Method of Analysis |         |                                                                                                                                                     | ling's solution           | -                                    |
| •                  |         |                                                                                                                                                     | •                         | 100 mL volumetric flask. Find th     |
|                    | titre ( | volume of de                                                                                                                                        | xtrose solution required  | I to reduce all the copper in 10 m   |
|                    |         |                                                                                                                                                     | n) corresponding to the   | standard dextrose solution (Refe     |
|                    |         | below).                                                                                                                                             |                           |                                      |
|                    |         |                                                                                                                                                     |                           | 300 mL of conical flask and run      |
|                    |         |                                                                                                                                                     |                           | standard dextrose solution require   |
|                    |         |                                                                                                                                                     |                           | that more than one mL will be        |
|                    | •       |                                                                                                                                                     | mplete the titration.     | a course Courtly boil the courtests  |
|                    |         |                                                                                                                                                     | anning mixture over wir   | e gauze. Gently boil the contents of |
|                    |         | the flask for 2 min.                                                                                                                                |                           |                                      |
|                    |         | 4. At the end of two minutes of boiling add without interrupting boiling, one mL                                                                    |                           |                                      |
|                    |         | of methylene blue indicator solution.  5. While the contents of the flask begin to boil, begin to add standard dextrose                             |                           |                                      |
|                    |         | solution (one or two drops at a time) from the burette till blue color of                                                                           |                           |                                      |
|                    |         | indicator disappears.                                                                                                                               |                           |                                      |
|                    |         |                                                                                                                                                     |                           | one minute so that the contents of   |
|                    |         | the flask boil together for 3 min without interpretation.                                                                                           |                           |                                      |
|                    |         | 7. Note the titre (that is total volume in mL of std. dextrose solution used for the                                                                |                           |                                      |
|                    | reduc   | reduction of all the copper in 10 mL of Fehling's solution.                                                                                         |                           |                                      |
|                    |         | 8. Multiply the titre (obtained by direct titration) by the number of mg of                                                                         |                           |                                      |
|                    |         | anhydrous dextrose in one millilitre of standard dextrose solution to obtain                                                                        |                           |                                      |
|                    |         | the dextrose factor.                                                                                                                                |                           |                                      |
|                    | 9. Comp | 9. Compare this factor with the dextrose factor and determine correction.                                                                           |                           |                                      |
|                    |         | Dextrose factors for 10 mL of Fehling's Solution                                                                                                    |                           |                                      |
|                    |         | Titre (mL)                                                                                                                                          | Dextrose factor           | Dextrose content per 100             |
|                    |         | Tiue (IIIL)                                                                                                                                         | Dextrose factor           | mL of solution (mg)                  |
|                    |         | 15                                                                                                                                                  | 49.1                      | 327                                  |
|                    |         | 16                                                                                                                                                  | 49.2                      | 307                                  |
|                    |         | 17                                                                                                                                                  | 49.3                      | 289                                  |
|                    |         | 18                                                                                                                                                  | 49.3                      | 274                                  |
|                    |         | 19                                                                                                                                                  | 49.4                      | 260                                  |
|                    |         | 20                                                                                                                                                  | 49.5                      | 247.4                                |
|                    |         | 21                                                                                                                                                  | 49.5                      | 235.8                                |
|                    |         | 22                                                                                                                                                  | 49.6                      | 225.5                                |
|                    |         | 23                                                                                                                                                  | 49.7                      | 216.1                                |
|                    |         | 24                                                                                                                                                  | 49.8                      | 207.4                                |
|                    |         | 25                                                                                                                                                  | 49.8                      | 199.3                                |

| - 2     | 26 | 49.9    | 191.8       |
|---------|----|---------|-------------|
|         | 27 | 49.9    | 184.9       |
| - 2     | 28 | 50.0    | 178.5       |
| - /     | 29 | 50.0    | 172.5       |
| -       | 30 | 50.1    | 167.0       |
| -       | 31 | 50.2    | 161.8       |
| ,       | 32 | 50.2    | 156.9       |
|         | 33 | 50.3    | 152.4       |
|         | 34 | 50.3    | 148.0       |
|         | 35 | 50.4    | 148.9       |
|         | 36 | 50.4    | 140.0       |
| ,       | 37 | 50.5    | 136.4       |
|         | 38 | 50.5    | 132.9       |
| ,       | 39 | 50.6    | 129.6       |
| 4       | 40 | 50.6    | 126.5       |
| 4       | 41 | 50.7    | 123.6       |
| 4       | 42 | 50.7    | 120.8       |
| 4       | 43 | 50.8    | 118.1       |
| 4       | 44 | 50.8    | 115.5       |
| 4       | 45 | 50.9    | 113.0       |
| 4       | 46 | 50.9    | 110.6       |
| 4       | 47 | 51.0    | 108.4       |
| 4       | 48 | 51.0    | 106.2       |
| 4       | 49 | 51.0    | 104.1       |
|         | 50 | 51.1    | 102.2       |
| N ('11' | C  | 1 1 1 . | 1' , 10 T C |

Milligrams of anhydrous dextrose corresponding to 10 mL of Fehlings solution

- a) Take 25 mL filtrate or aliquot containing (if possible) 50 200 mg reducing sugars and titrate with mixed Fehling A and B solution using Lane and Eynon Volumetric method.
- b) For inversion at room temperature, transfer 50 mL aliquot clarified and deleaded solution to a 100 mL volumetric flask, add 10 mL HCl (1+ 1) and let stand at room temperature for 24 h. (For immediate inversion, the sample with HCl can be heated at 70 °C for 1 h).
- c) Neutralise exactly with conc. NaOH solution using phenolphthalein indicator and dilute to 100 mL. Titrate against mixed Fehling A and B solution (25 mL of Fehling's Solution can be considered for the purpose) and determine total sugar as invert sugar (Calculate added sugar by deducting reducing sugars from total sugars).

## Calculation with units of expression

Reducing and total reducing sugar can be calculated as below:

Reducing sugar (%)

 $= \frac{\text{(mg of invert sugar} \times \text{volume made up} \times 100)}{\text{TR} \times \text{Weight of sample} \times 1000}$ 

Total reducing sugar (%)

|             | mg of invert sugar $\times$ final volume made up $\times$ original volume $\times$ 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | TR × Weight of sample × aliquot taken for inversion × 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | Total sugar (as sucrose) (%) = (Total reducing sugar – Reducing sugar) × 0.95 + Reducing sugar  Added sugar = Total sugars – Reducing sugars                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Reference   | <ol> <li>Table 2: IS 6287:1985, Methods for sampling and analysis for sugar confectionery, Pg.11</li> <li>AOAC 17th edn, 2000 Official Method 925.35 Sucrose in Fruits and Fruit Products read with AOAC Official method 923.09 Lane and Eynon general volumetric method</li> <li>AOAC 984.17: 'Method for the determination of Sugars in foods', <i>Jr. Agri. and Food Chemistry</i>, 19(3):551-54, (1971) (Modified) Brobst, K.M.</li> <li>Gas-Liquid Chromatography of Trimethylsilyl Derivatives, Methods in Carbohydrate Chemistry, 6:3-8, Academic Press, New York, NY, (1972)</li> </ol> |
| A 11        | (Modified)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Approved by | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|                                                                                                                                                          | Determination of Total Sugar –Anthrone Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|
| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Government of India |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                          |
| Method No.                                                                                                                                               | FSSAI 13.038:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Revision No. & Date              | 0.0                      |
| Scope                                                                                                                                                    | Anthrone method – Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l sugars in alcoholic beverag    | ges are determined using |
|                                                                                                                                                          | anthrone method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                          |
| Caution                                                                                                                                                  | <ol> <li>Hydrochloric acid: Hydrochloric acid is a hazardous liquid which must be used with care. The acid itself is corrosive, and concentrated forms release acidic mists that are also dangerous. If the acid or mist come into contact with the skin, eyes, or internal organs, the damage can be irreversible or even fatal in severe cases.</li> <li>Sodium carbonate: Eye contact can cause permanent corneal injury and possible burns. Avoid ingestion or inhalation of dust. Due to these potential hazards, sodium carbonate should be handled with care.</li> <li>Sulphuric acid: Concentrated sulphuric acid is extremely corrosive and can cause serious burns when not handled properly. This chemical is unique because it not only causes chemical burns, but also secondary thermal burns</li> </ol> |                                  |                          |
|                                                                                                                                                          | <ul> <li>as a result of dehydration. This dangerous chemical is capable of corroding skin, paper, metals, and even stone in some cases. If sulphuric acid makes direct contact with the eyes, it can cause permanent blindness. If ingested, this chemical may cause internal burns, irreversible organ damage, and possibly death.</li> <li>4. Anthrone: Causes skin irritation. Causes serious eye irritation. May cause respiratory irritation.</li> <li>5. Toluene: Toluene is a highly flammable liquid and it can cause mild damage to the skin and the eyes. However, the most-common hazard associated with this chemical is inhalation. Products containing toluene can produce dangerous fumes which can cause nausea, headaches, unconsciousness, and even death if inhaled.</li> </ul>                     |                                  |                          |
| Principle                                                                                                                                                | Carbohydrates are first hydrolysed into simple sugars using dilute hydrochloric acid. In hot acidic medium glucose is dehydrated to hydroxymethyl furfural. This compound forms with anthrone a green colored product with an absorption maximum at 630 nm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                          |
| Apparatus/ Instruments                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l apparatus (Refer 2.0 at page 1 | no. 2).                  |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V-Visible (variable wavelength   |                          |
| Materials and Reagents                                                                                                                                   | 1. Alcoholic beverages 2. Hydrochloric acid (36%) 3. Sodium carbonate 4. Anthrone 5. Sulphuric acid 6. Standard Glucose 7. Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                          |
| Preparation of reagents                                                                                                                                  | <ol> <li>Hydrochloric acid (2.5 N): Dilute Hydrochloric acid (21.5 mL) to 100 mL.</li> <li>Anthrone reagent: Dissolve 200 mg anthrone in 100 mL of ice cold 95% Sulphuric acid. Prepare fresh before use.</li> <li>Stock Standard Glucose solution: Dissolve 100 mg of standard glucose in 100 mL water.</li> <li>Working standard Glucose solution: 10 mL of stock Standard Glucose</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                          |

|                           | solution diluted to 100 mL with distilled water. Store refrigerated after adding                                                                                                                                                 |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                           | a few drops of toluene.                                                                                                                                                                                                          |  |  |
| Sample Preparation        | <ol> <li>Take 100 mL of alcoholic beverage and remove alcohol completely by distillation on water bath at 80 °C. Note down the weight (A mg) of the residue</li> <li>Weigh 100 mg of the residue into a boiling tube.</li> </ol> |  |  |
|                           | 3. Hydrolyze by keeping it in a boiling water bath for three hours with 5 mL of 2.5 N HCI and cool to room temperature.                                                                                                          |  |  |
|                           | 4. Neutralize it with solid sodium carbonate until the effervescence ceases.                                                                                                                                                     |  |  |
|                           | 5. Make up the volume to 100 mL and centrifuge.                                                                                                                                                                                  |  |  |
|                           | 6. Collect the supernatant and take 0.5 and 1 mL for analysis as test sample.                                                                                                                                                    |  |  |
| Method of analysis        | 1. Prepare the standards by taking 0, 0.2, 0.4, 0.6, 0.8 and 1 mL of the working standard glucose solution. '0' serves as blank.                                                                                                 |  |  |
|                           | 2. Make up the volume to 1 mL in all the tubes including the sample tubes by adding distilled water.                                                                                                                             |  |  |
|                           | 3. Then add 4 mL of anthrone reagent.                                                                                                                                                                                            |  |  |
|                           | 4. Heat for eight minutes in a boiling water bath.                                                                                                                                                                               |  |  |
|                           | 5. Cool rapidly to room temperature and make upto 5 mL with distilled water                                                                                                                                                      |  |  |
|                           | 6. Read the green to dark green colour at 630 nm.                                                                                                                                                                                |  |  |
|                           | 7. Draw a standard graph by plotting concentration of the standard on the X-axis versus absorbance on the Y-axis.                                                                                                                |  |  |
|                           | 8. From the graph calculate the amount of carbohydrate present in the sample                                                                                                                                                     |  |  |
| Calculation with units of | tube.                                                                                                                                                                                                                            |  |  |
| expression                | Amount of carbohydrate present in 100 mg of the sample residue (B)<br>= $(\text{mg of glucose} \div \text{Volume of test sample}) \times 100$                                                                                    |  |  |
|                           | Amount of carbohydrate present in 100 mL of the alcoholic beverage                                                                                                                                                               |  |  |
|                           | $= \frac{B \times A}{100}$                                                                                                                                                                                                       |  |  |
| Reference                 | Hedge, J E and Hofreiter, B T (1962) In: Carbohydrate Chemistry 17 (Eds Whistler R L and Be Miller, J N) Academic Press New York                                                                                                 |  |  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                             |  |  |
| Approved by               | Scientific 1 and on Methods of Sampling and Analysis                                                                                                                                                                             |  |  |

| SSAT FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA                                                              | Determination of Carbonation (GV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |            |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------|
| Inspiring Trust, Assuring Safe & Nutritious Food<br>Ministry of Health and Family Welfare, Government of India |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |            |
| Method No.                                                                                                     | FSSAI 13.039:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Revision No. & Date           | 0.0        |
| Scope                                                                                                          | In case of carbonated RTD low alcoholic beverages, they shall be carbonated with carbon dioxide conforming to Grade 2 of IS 307 to a pressure in accordance with their character. However, the carbonated RTD low alcoholic beverages shall have a minimum of one volume of carbon dioxide. The gas volume is the amount of carbon dioxide the water will absorb at the normal atmospheric pressure at 15,56 T.                                                                                                                                                                                                   |                               |            |
| Principle                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | determined using the pressure | •          |
| Apparatus / Instruments                                                                                        | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>The apparatus consists of a pressure gauge having a hollow spike with holes in its side. The bottle is inserted from the side into the slot provided in the neck of the carbon dioxide tester and is secured in place by tightening with a threaded system, the pressure gauge is inserted until the needle point touches the crown cork. There is a sniff valve on the gauge stem, which is kept closed until the needlepoint of the pressure gauge is forced through the crown cork. The reading is noted on the gauge.</li> </ol> |                               |            |
| Materials and Reagents                                                                                         | Alcoholic beverages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |            |
| Method of Analysis                                                                                             | <ol> <li>Clamp the bottle in the frame of the gas volume tester.</li> <li>Pierce the crown cork but do not shake the bottle. Sniff off the top gas quickly until the gauge reading drops to zero.</li> <li>Make certain to close the valve the instant the needle touches zero in the pressure gauge, Shake the bottle vigorously until the gauge gives a reading that additional shaking does not change.</li> <li>Record the pressure.</li> <li>Note the temperature and record it.</li> </ol>                                                                                                                  |                               |            |
| Calculation with units of                                                                                      | Obtain the volume of gas f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rom Table 2 of IS 2346.       |            |
| expression                                                                                                     | 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |            |
| Reference                                                                                                      | 2. IS: 2346 Carbonated be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | beverages. |
| Approved by                                                                                                    | Scientific Panel on Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ls of Sampling and Analysis   |            |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Covernment of India | Determination of pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method No.                                                                                                                                               | FSSAI 13.040:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Revision No. & Date                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                           |
| Scope                                                                                                                                                    | The pH is closely related to the concentration of hydrogen ions (H+) present in alcoholic beverages (the pH characteristics of alcoholic beverages depend on various parameters, such as the quality of the reducing water, the duration of maturation in casks, the nature of the aromatic raw materials, and of any additives).  Due to the presence of ethyl alcohol in alcoholic beverages, the pH should be measured according to specific procedures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                               |
| Caution                                                                                                                                                  | measured according to specific procedures.  1. Potassium tartrate monobasic: Accidental ingestion of the material may be damaging to the health of the individual. Excessive amounts or overuse may bring irritant and / or harmful effects. Potassium causes a slow, weak pulse, irregularities in heart rhythm, heart block and an eventual fall in blood pressure. The acid itself have all produced serious poisonings or fatalities in man. Gastrointestinal symptoms are marked and include violent vomiting, diarrhea, abdominal pain and thirst followed by cardiovascular collapse and/or kidney failure. This material can cause eye irritation and damage in some persons. This material can cause inflammation of the skin on contact in some persons and produce health damage following entry through wounds, lesions or abrasions. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. If inhaled, the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.  2. Thymol: Ingestion may cause burning pain in the oesophagus, nausea, abdominal pain, vomiting, dizziness, convulsions, coma, cyanosis, central hyperactivity (e.g., talkativeness), cardiac and respiratory arrest.  3. Potassium hydrogen phthalate: May cause eye, skin, and respiratory tract irritation.  4. Decahydrate Borax: Borax can be irritating when exposure occurs through skin or eye contact, inhalation or ingestion. Poison reports suggest misuse of borax-based pesticides can result in acute toxicity, with symptoms including vomiting, eye irritation, nausea, skin rash, oral irritation and respiratory effects. |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                               |
| Principle                                                                                                                                                | media 1. The traditional pH radissociation of water. or the water is replace i.e. the latter's ionic pr water. This results in tions (i.e. which are no possible to carry out ab can be made. In additio 2. However, from a water be used, i.e. expressed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ange extending from 0 to 1 If the water content of a solud by another solvent, it is the roduct which is taken into accordally different concentration of chemically bound). In nonsolute measurements of pH. On, partially aqueous media are recontent of at least 5%, the clin terms of absolute values are conditions, at the interface be | 14 is determined by the ation is gradually reduced dissociation equilibrium, ount instead of that of the ranges for the "free" H+1-aqueous media, it is not nly relative measurements often low-ion. assic definition of pH can and not just relative values. |

|                         | signal unstable. There is also a risk of precipitation at the membrane level. The same problem is also encountered when using concentrated solutions of KCl as the reference electrolyte. |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                         | 3. Specific measurement conditions - To avoid the problems described above, the basic requirement is that the electrolyte solution to measure and form a                                  |  |  |
|                         | homogeneous solution without phase separation or precipitation. This                                                                                                                      |  |  |
|                         | condition can be met using lithium chloride (LiCl) in an ethanol medium. A                                                                                                                |  |  |
|                         | second condition is the use of an electrode with cylindrical membrane and a ground-in diaphragm, to ensure optimum contact between the reference                                          |  |  |
|                         | electrolyte and the solution to be measured.                                                                                                                                              |  |  |
| Apparatus / Instruments | 1. General Glassware and apparatus (Refer 2.0 at page no. 2).                                                                                                                             |  |  |
|                         | 2. pH meter - pH meter calibrated in pH units, enabling measurements to a                                                                                                                 |  |  |
|                         | minimum accuracy of: $\pm 0.01$ pH i.e. $\pm 1$ mV. The instrument is preferably to                                                                                                       |  |  |
|                         | be equipped with an electronic device for the automatic compensation of the temperature to a minimum accuracy of $\pm$ 0.5 °C. The pH meter should be                                     |  |  |
|                         | used in a place sheltered from pollutants, acid or alkaline vapours in                                                                                                                    |  |  |
|                         | particular, hydrogen sulphide (H <sub>2</sub> S) and ammonia (NH <sub>3</sub> ).                                                                                                          |  |  |
|                         | 3. Electrodes - Combined electrode: The electrodes marketed for this specific                                                                                                             |  |  |
|                         | purpose are generally of the type-combined electrode. The useful part of the                                                                                                              |  |  |
|                         | electrode consists of a cylindrical membrane and a ground in diaphragm made of Teflon. The reference electrolyte is an ethanol solution at 95% vol.                                       |  |  |
|                         | of lithium chloride (LiCl) to 1 mol/L. Its alcoholic strength should be close to                                                                                                          |  |  |
|                         | that of the alcoholic beverage to be analysed. Immerse the electrode tip when                                                                                                             |  |  |
|                         | not used continuously, in an ethanol solution of lithium chloride to 1 mol/1,                                                                                                             |  |  |
|                         | unless otherwise specified by the manufacturer of the electrode.                                                                                                                          |  |  |
|                         | 4. Stirring device: magnetic stirrer and bar, for example.  5. Cleaning supplies: Joseph paper, etc.                                                                                      |  |  |
| Materials and Reagents  | <ul><li>5. Cleaning supplies: Joseph paper, etc.</li><li>1. Alcoholic beverages</li></ul>                                                                                                 |  |  |
| Whaterians and Reagents | 2. Deionised or distilled water-Free from carbon dioxide and metal ions, with a                                                                                                           |  |  |
|                         | maximum conductivity of 200 μS/m@ 20 °C                                                                                                                                                   |  |  |
|                         | 3. Potassium acid tartrate                                                                                                                                                                |  |  |
|                         | 4. Thymol                                                                                                                                                                                 |  |  |
|                         | <ul><li>5. Potassium hydrogen phthalate</li><li>6. Potassium dihydrogen phosphate</li></ul>                                                                                               |  |  |
|                         | 7. Dipotassium phosphate                                                                                                                                                                  |  |  |
|                         | 8. Decahydrated Borax, (B <sub>4</sub> O <sub>7</sub> Na <sub>2</sub> .10 H <sub>2</sub> O)                                                                                               |  |  |
|                         | 9. Standard buffer solution: With reference to standard NFT 01012 "pH                                                                                                                     |  |  |
|                         | measurement - standard solutions for calibration of a pH meter"                                                                                                                           |  |  |
|                         | (i) pH buffer solution: 3.57 at 20 °C<br>(ii) pH buffer solution: 4.00 at 20 °C                                                                                                           |  |  |
|                         | (iii) pH buffer solution: 4.00 at 20 °C                                                                                                                                                   |  |  |
|                         | (iv) pH buffer solution: 9.22 at 20 °C                                                                                                                                                    |  |  |
| Preparation of reagents | 1. pH buffer solution - 3.57 at 20 °C: Saturated solution of potassium acid                                                                                                               |  |  |
|                         | tartrate. Solution containing at least 5.7 g/l of potassium acid tartrate (HOOC                                                                                                           |  |  |
|                         | C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> COOK) at 20 °C. This solution can be kept for two months in the presence of 0.1 g of thymol per 200 mL. (3.57 at 20 °C); (3.56 at 25 °C);    |  |  |
|                         | (3.55 at 30 °C).                                                                                                                                                                          |  |  |
|                         | 2. pH buffer solution - 4.00 at 20 °C: 0.05 M solution of potassium hydrogen                                                                                                              |  |  |
|                         | phthalate. Solution containing 10.211 g/1 of potassium hydrogen phthalate at                                                                                                              |  |  |
|                         | 20 °C (maximum storage time: 2 months). (3.999 at 15 °C); (4.003 at 20 °C);                                                                                                               |  |  |

|                           | (4.008 at 25 °C); (4.015 at 30 °C).                                                                               |
|---------------------------|-------------------------------------------------------------------------------------------------------------------|
|                           | 3. pH buffer solution - 6.88 at 20 °C: Solution containing Potassium dihydrogen                                   |
|                           | phosphate ( $KH_2PO_4$ - 3.402 g), and Dipotassium phosphate, ( $K_2HPO_4$ - 4.354                                |
|                           | g) and Water q.s.p 1 L (Shelf life: 2 months). (6.90 at 15 °C); (6.88 at 20 °C);                                  |
|                           | (6.86 at 25 °C); (6.85 at 30 °C).                                                                                 |
|                           | 4. pH buffer solution - 9.22 at 20 °C: Solution containing Decahydrated Borax,                                    |
|                           | (B <sub>4</sub> O <sub>7</sub> Na <sub>2</sub> .10 H <sub>2</sub> O 3.810 g) Water q.s.p 1 L. (pH: 9.22 at 20 °C) |
|                           | P.S.: Basic buffer solutions are quickly altered by the carbon dioxide in the                                     |
|                           | surrounding air, and it is therefore necessary to renew the solution for each                                     |
|                           | calibration).                                                                                                     |
|                           | Note: market-available reference buffer solutions can also be used (according to                                  |
|                           | the DIN 19266 standard and NBS, for example).                                                                     |
| Method of Analysis        | Calibration of the measurement chain                                                                              |
|                           | 1. Two standard solutions are needed to calibrate the pH meter. Their pH                                          |
|                           | should, if possible, be located on either side of the presumed pH value of the                                    |
|                           | test solution; if this is not possible, one of them must not differ by more than                                  |
|                           | one unit pH from the presumed value.                                                                              |
|                           | 2. Zero setting the measurement chain (pH): Operate in accordance with the                                        |
|                           | instructions provided with the apparatus used. Rinse the electrodes with the                                      |
|                           | first standard buffer solution by pouring the liquid along them.                                                  |
|                           | 3. Introducing a sufficient volume of the same standard solution into the                                         |
|                           | measuring vessel (it should be clean and dry) and immerse the electrodes.                                         |
|                           | 4. Adjust the indication of the pH meter on the pH value of the standard solution                                 |
|                           | taking into account its temperature (if necessary).                                                               |
|                           | 5. Remove the electrodes and discard the standard solution contained in the                                       |
|                           | measuring vessel.                                                                                                 |
|                           | Setting the slope of the electrode                                                                                |
|                           | 6. Rinse the electrodes with distilled or deionised water and then with the                                       |
|                           | second standard buffer solution introduce a sufficient volume of the same                                         |
|                           | standard buffer solution and immerse the electrodes. If the result matches the                                    |
|                           | known value of the pH of the standard solution, the unit is in working                                            |
|                           | condition and is properly calibrated.                                                                             |
|                           | Calibration Check                                                                                                 |
|                           | 7. Use a buffer solution with an intermediate pH value in relation those used for                                 |
|                           | calibration.                                                                                                      |
|                           | pH measurements                                                                                                   |
|                           | 8. Once the device has been calibrated, rinse the electrodes and the measuring                                    |
|                           | vessel, first with deionised or distilled water, then with the test solution by                                   |
|                           | proceeding as above.                                                                                              |
|                           | 9. Homogenize the test solution, introduce a sufficient volume in the measuring                                   |
|                           | vessel.                                                                                                           |
|                           | 10. Immerse the electrodes.                                                                                       |
|                           | 11. Lightly stir the test solution.                                                                               |
|                           | 12. Verify that the indication given by the pH meter is stable and record it.                                     |
| Calculation with units of | EXPRESSION OF RESULTS                                                                                             |
| expression                | 1. In the operating conditions described above, the accuracy of the                                               |
|                           | determination is $\pm 0.02$ pH units.                                                                             |
|                           | 2. The results are expressed in units of pH, at a temperature of 20 °C, in the                                    |
|                           | form pH at 20 °C = xx, xx                                                                                         |
|                           | · · · · · · · · · · · · · · · · · · ·                                                                             |

| Reference   | Compendium of International Methods of Spirituous Beverages of                |  |
|-------------|-------------------------------------------------------------------------------|--|
|             | Vitivinicultural Origin, International Organisation Of Vine And Wine, Edition |  |
|             | 2019, pH, Method No OIV-MA-BS-13                                              |  |
| Approved by | Scientific Panel on Methods of Sampling and Analysis                          |  |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA  Inspiring Trust, Assuring Safe & Nutritious Food  Ministry of Health and Family Wellers, Covernment of India |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ole - Gas Chromatography o<br>Spirit Drinks of Viti-vinicul                                                                                                               |                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method No.                                                                                                                                                 | FSSAI 13.041:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Revision No. & Date                                                                                                                                                       | 0.0                                                                                                                                                                                         |
| Scope                                                                                                                                                      | Anethole (also known as anise camphor) is an organic compound that is widely used as a flavouring substance. It is a derivative of phenylpropene, a type of aromatic compound that occurs widely in nature, This method is suitable for the determination of trans-anethole in aniseed flavoured spirit drinks using capillary gas chromatography.                                                                                                                                                                                                                                       |                                                                                                                                                                           |                                                                                                                                                                                             |
| Caution                                                                                                                                                    | <ol> <li>Trans-anethole: May cause an allergic skin reaction. Avoid breathing dust /fume /gas/mist/vapors/spray.</li> <li>Estragole: Harmful if swallowed, Acute oral toxicity. Recently estragole carcinogenicity is reported.</li> </ol>                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                                                                             |
| Principle                                                                                                                                                  | Concentration of the trans-anethole in spirit is determined by gas chromatography (GC). The same quantity of an internal standard, e.g. 4-allylanisole (estragole) (when estragole is not naturally present in the sample), is added to the test sample and to a trans-anethole reference solution of known concentration, both of which are then diluted with a 45% ethanol solution and injected directly into the GC system.  An extraction is necessary before sample preparation during analysis for liqueurs that contain large amounts of sugars.                                 |                                                                                                                                                                           |                                                                                                                                                                                             |
| Apparatus / Instruments                                                                                                                                    | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>A capillary gas chromatograph fitted with a flame ionisation detector (FID) and integrator or other data handling system capable of measuring peak areas, and with an automatic sampler or the necessary equipment for manual sample injection.</li> <li>Split/splitless injector.</li> <li>Capillary column: Length - 50 m; Internal diameter - 0.32 mm; Film thickness - 0.2 μm; Stationary phase - Free Fatty Acid Phase (FFAP-modified TPA polyethylene glycol cross-linked porous Polymer .</li> </ol> |                                                                                                                                                                           |                                                                                                                                                                                             |
| Materials and Reagents                                                                                                                                     | <ol> <li>Alcoholic beverages.</li> <li>Trans-anethole (&gt;98% pure; stored at 4 °C) - Trans-anethole will need to be "thawed" from its crystalline state before use, but in this case its temperature should never exceed 35 °C.</li> <li>Estragole (&gt;98% pure; stored at 4 °C).</li> <li>Water of at least grade 3 as defined by ISO 3696.</li> <li>Ethanol 96%</li> </ol>                                                                                                                                                                                                          |                                                                                                                                                                           |                                                                                                                                                                                             |
| Preparation of reagents                                                                                                                                    | 1. Ethanol 45%: Add 560 Preparation of standard so 2. Standard solution A -S Weigh 40 mg of trans ethanol and make up to 3. Internal standard sol estragole (concentrativolumetric flask. Add vol. ethanol, mix thoro 4. All standard solutions                                                                                                                                                                                                                                                                                                                                          | Stock solution of trans-anethol-anethole in a 20 mL volumeto volume with 45% vol. ethanoution B - Stock solution of on- 2 g/L): Weigh 40 mg of some 96% vol. ethanol make | e (concentration - 2 g/L):<br>ric flask. Add some 96%<br>ol, mix thoroughly.<br>f internal standard, e.g.<br>of estragole in a 20 mL<br>e up to volume with 45%<br>perature (15-35 °C) away |

|                    | The stopper should preferably be fitted with an aluminium seal. The stock solutions must be freshly prepared each week.                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                    | Solutions used to check the linearity response of the FID 5. The linearity response of the FID must be checked for the analysis taking into account a range of concentrations of trans-anethole in spirits from 0 g/L up to 0.25 g/L. (In the procedure of analysis, the unknown samples of spirits to be analysed are diluted 10 times).                                                                                                                                                                                                          |  |
|                    | <ul> <li>6. For the conditions of the analysis described in the method, stock solutions corresponding to concentrations of 0, 0.05, 0.1, 0.15, 0.2, and 0.25 g/L of trans-anethole in the sample to be analysed are prepared as follows: take 0.5, 1, 1.5, 2, and 2.5 mL of stock solution A and pipette in separate 20 mL volumetric flasks; pipette into each flask 2 mL of internal standard solution B and make up to volume with 45% vol. ethanol, mix thoroughly.</li> <li>7. The blank solutions are used as the 0 g/L solution.</li> </ul> |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                    | 8. Standard solution C: Take 2 mL of standard solution A and pinette into a 20 mL valumetric fleek                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                    | Take 2 mL of standard solution A and pipette into a 20 mL volumetric flask                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                    | then add 2 mL of internal standard solution B and make up to volume with                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    | 45% vol. ethanol, mix thoroughly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Sample Preparation | Preparation of unknown samples  1. Pipette 2 mL sample into a 20 mL volumetric flask then add 2 mL of internal standard solution B and make up to volume with 45% vol. ethanol mix thoroughly.                                                                                                                                                                                                                                                                                                                                                     |  |
|                    | 2. Blank - Pipette 2 mL of internal standard solution B into a 20 mL volumetric                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                    | flask and make up to volume with 45% vol. ethanol, mix thoroughly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Method of Analysis | 1. The column type and dimensions, and the GC conditions, should be such                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Withou of Analysis | that anethole and the internal standard are separated from each other and                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                    | from any interfering substances.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                    | 2. Typical conditions for the column:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                    | i. Carrier gas: analytical helium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                    | ii. Flow rate: 2 mL/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                    | iii. Injector temperature: 250 °C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                    | iv. Detector temperature: 250 °C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                    | v. Oven temperature conditions: isothermal, 180 °C, run time 10 min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                    | vi. Injection volume: 1 μL, split 1:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                    | 3. Samples should be stored at room temperature, away from light and cold.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                    | Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                    | 4. Sample screening for estragole.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                    | 5. To ensure that there is no estragole naturally present in the sample, a blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                    | analysis should be carried out without the addition of any internal standard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                    | 6. If estragole is naturally present, then another internal standard must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                    | chosen (for instance menthol). Pipette 2 mL sample into a 20 mL volumetric                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                    | flask and make up to volume with 45% vol. ethanol (4.4), mix thoroughly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                    | 7. Linearity test Prior to the commencement of the analysis the linearity of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                    | response of the FID should be checked by successively analysing in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                    | triplicate each of the linearity standard solutions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                    | 8. From the integrator peak areas for each injection plot a graph of their mother                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                    | solution concentration in g/L versus the ratio R for each.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                    | R = trans-anethole peak area divided by the estragole peak area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Í                  | 9. A linear plot should be obtained.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

|                           | 10. Determination: Inject the blank solution, followed by standard solution C, followed by one of the linearity standards which will act as a quality control sample (this may be chosen with reference to the probable concentration of trans-anethole in the unknown), followed by 5 unknowns; insert a linearity (quality control) sample after every 5 unknown samples, to ensure analytical stability. |  |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Calculation with units of | Measure peak areas (using an integrator or other data system) for trans-anethole                                                                                                                                                                                                                                                                                                                            |  |  |
| expression                | and internal standard peaks.                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <b>F</b>                  | 1. Response factor (RFi) calculation                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                           | The response factor is calculated as follows                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                           | $RF_{i} = \left(\frac{C_{i}}{area_{i}}\right) \times \left(\frac{area_{is}}{C_{is}}\right)$                                                                                                                                                                                                                                                                                                                 |  |  |
|                           | Where:                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                           | C <sub>i</sub> is the concentration of trans-anethole in the standard solution A.                                                                                                                                                                                                                                                                                                                           |  |  |
|                           | $C_{is}$ is the concentration of internal standard in the standard solution B.                                                                                                                                                                                                                                                                                                                              |  |  |
|                           | area; is the area of the trans-anethole peak                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                           | area <sub>is</sub> is the area of the internal standard peak                                                                                                                                                                                                                                                                                                                                                |  |  |
|                           | RF <sub>i</sub> is calculated from the 5 samples of standard solution C                                                                                                                                                                                                                                                                                                                                     |  |  |
|                           | 2. Analysis of the linearity response test solutions                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                           | Inject the linearity response test solutions.                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                           | 3. Analysis of the sample                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                           | Inject the unknown sample solution (head – sample preparation)                                                                                                                                                                                                                                                                                                                                              |  |  |
|                           | RESULTS                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                           | The formula for the calculation of the concentration of trans-anethole is the                                                                                                                                                                                                                                                                                                                               |  |  |
|                           | following: $c_i = C_{is} \times (\frac{\text{area}_i}{\text{area}_{is}}) \times RF_i$                                                                                                                                                                                                                                                                                                                       |  |  |
|                           | where:                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                           | c <sub>i</sub> is the unknown trans-anethole concentration                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                           | C <sub>is</sub> is the concentration of internal standard in the unknown                                                                                                                                                                                                                                                                                                                                    |  |  |
|                           | Area <sub>i</sub> is the area of the trans-anethole peak                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                           | Area <sub>is</sub> is the area of the internal standard peak                                                                                                                                                                                                                                                                                                                                                |  |  |
|                           | RF <sub>i</sub> is the response coefficient (calculated as in pt. no. 8 - Method of Analysis)<br>The trans-anethole concentration is expressed as grams per litre, to one decimal                                                                                                                                                                                                                           |  |  |
|                           | place.                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                           | QUALITY ASSURANCE AND CONTROL                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                           | The chromatograms should be such that anethole and the internal standard are separated from each other and from any interfering substances. The RF <sub>i</sub> value is calculated from the results for the 5 injections of solution C. If the coefficient of variation (CV $\%$ = (standard deviation/mean) *100)) is within plus or minus 1%,                                                            |  |  |
|                           | the RF <sub>i</sub> average value is acceptable.                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                           | The calculation above should be used to calculate the concentration of trans-                                                                                                                                                                                                                                                                                                                               |  |  |
|                           | anethole in the sample selected for the quality control from the linearity control                                                                                                                                                                                                                                                                                                                          |  |  |
|                           | solutions.                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                           | If the mean calculated results from analysis of the linearity solution selected for                                                                                                                                                                                                                                                                                                                         |  |  |
|                           | Internal Quality Control sample (IQC) are within plus or minus 2.5% of their theoretical value, then the results for the unknown samples can be accepted.                                                                                                                                                                                                                                                   |  |  |
| Reference                 | ISO 3696: 1987 Water for analytical laboratory use - Specifications and test                                                                                                                                                                                                                                                                                                                                |  |  |
| Reference                 | methods                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA.  Inspiring Trust, Assuring Safe & Nutritious Food  Ministry of Health and Family Walter, Government of India | Determination of Trans-anethole in Spirit Drinks containing large amount of Sugar by GC Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Method No.                                                                                                                                                 | FSSAI 13.042:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Scope                                                                                                                                                      | Extraction of alcohol from spirit drinks containing a large amount of sugar, in order to be able to determine the trans-anethole concentration using capillary gas chromatography.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Caution                                                                                                                                                    | <ol> <li>Trans-anethole: May cause an allergic skin reaction. Avoid breathing dust /fume/gas/mist/vapors/spray.</li> <li>Estragole: Harmful if swallowed, Acute oral toxicity. Recently estragole carcinogenicity is reported.</li> <li>Ammonium sulphate: Causes irritation to skin, eyes and respiratory tract. May be harmful if swallowed. Avoid contact with eyes, skin and clothing.</li> <li>Sodium phosphate, dibasic, dodecahydrate: Contact can irritate the skin and eyes. Breathing Sodium Phosphate Dibasic can irritate the nose and throat causing coughing and wheezing. High and repeated exposure can cause a skin rash.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Principle                                                                                                                                                  | Take an aliquot of the liqueur sample and add the internal standard, at a concentration similar to that of the analyte (trans-anethole) in the liqueur. Add sodium phosphate dodecahydrate and anhydrous ammonium sulphate. Shake well the resulting mixture and chill to develop two layers, and remove the upper alcohol layer. Take an aliquot of this alcohol layer and dilute with 45 % ethanol solution. Analyse the resulting solution using gas chromatography as described in FSSAI 13.041:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Apparatus / Instruments                                                                                                                                    | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>Equipment as described in FSSAI 13.041:2021</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Materials and Reagents                                                                                                                                     | <ol> <li>Equipment as described in FSSAI 13.041:2021</li> <li>Alcoholic beverages.</li> <li>Ammonium sulphate, anhydrous, (Purity &gt;99%)</li> <li>Sodium phosphate, dibasic, dodecahydrate, (Purity &gt;99%)</li> <li>Materials and Reagents as described in FSSAI 13.041:2021</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Sample Preparation                                                                                                                                         | <ol> <li>Sample screening for estragole</li> <li>To ensure that there is no estragole naturally present in the sample, a blank extraction and analysis should be carried out without the addition of any internal standard. If estragole is naturally present, then another internal standard must be chosen.</li> <li>Extraction</li> <li>Pipette 5 mL of 96% ethanol into a conical flask, weigh into this flask 50 mg of internal standard, and add 50 mL of the sample. Add 12 g of ammonium sulphate, anhydrous, and 8.6 g of dibasic sodium phosphate, dodecahydrate. Stopper the conical flask.</li> <li>Shake the flask for at least 30 min. A mechanical shaking device may be used, but not a Teflon coated magnetic stirring bar, as the Teflon will absorb some of the analyte. Note that the added salts will not dissolve completely.</li> <li>Place the stoppered flask in a refrigerator (T&lt; 5 °C) for at least two hours.</li> <li>After this time, there should be two distinct liquid layers and a solid residue. The alcohol layer should be clear; if not replace in the refrigerator until a clear separation is achieved.</li> <li>When the alcohol layer is clear, carefully take an aliquot (e.g. 10 mL),</li> </ol> |  |

|                           | without disturbing the aqueous layer, place in an amber vial and close securely.                     |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------|--|--|
|                           | Preparation of the extracted sample to be analysed                                                   |  |  |
|                           | 7. Allow extract to reach room temperature. Take 2 mL of the alcohol layer of                        |  |  |
|                           | the extracted sample and pipette into a 20 mL volumetric flask, make up to                           |  |  |
|                           | volume with 45% ethanol, mix thoroughly.                                                             |  |  |
| Procedure                 | Analyse as described in FSSAI 13.041:2021                                                            |  |  |
| Calculation with units of | Follow the procedure as outlined in FSSAI 13.041:2021                                                |  |  |
| expression                | CALCULATION OF RESULTS                                                                               |  |  |
|                           | Use the following formula to calculate the results                                                   |  |  |
|                           | $C_{i} = \left(\frac{m_{is}}{V}\right) \times \left(\frac{area_{i}}{area_{is}}\right) \times RF_{i}$ |  |  |
|                           | Where:                                                                                               |  |  |
|                           | m <sub>is</sub> is the weight of internal standard taken (in milligrams)                             |  |  |
|                           | V is the volume of unknown sample (50 mL)                                                            |  |  |
|                           | RF <sub>i</sub> is the response factor (21.0)                                                        |  |  |
|                           | area <sub>i</sub> is the area of the trans-anethole peak                                             |  |  |
|                           | area <sub>is</sub> is the area of the internal standard peak                                         |  |  |
|                           | The results are expressed in grams per litre, to one decimal place.                                  |  |  |
| Reference                 | Compendium of International Methods of Spirituous Beverages of                                       |  |  |
|                           | Vitivinicultural Origin by International Organisation of Vine and Wine, Edition                      |  |  |
|                           | 2019, Anethole. Determination of trans-anethole by GC, Method No. OIV-MA-                            |  |  |
|                           | BS-15 : R2009                                                                                        |  |  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                                                 |  |  |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Government of India | Determination of the Principal Compounds Extracted from Wood during<br>Ageing of Spirit Drinks of Viti-vinicultural origin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Method No.                                                                                                                                               | FSSAI 13.043:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Scope                                                                                                                                                    | The present method pertains to the determination of furfural, 5-hydroxyl methylfurfural, 5-methylfurfural, vanillin, syringaldehyde, coniferaldehyde, sinapaldehyde, gallic, ellagic, vanillic, and syringic acids, and scopoletin, by high performance liquid chromatography.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Caution                                                                                                                                                  | <ol> <li>Methanol: Methanol is highly flammable and toxic. Direct ingestion of more than 10 mL can cause permanent blindness by destruction of the optic nerve, poisoning of the central nervous system, coma and possibly death. These hazards are also true if methanol vapors are inhaled. It is best to avoid direct exposure.</li> <li>Acetic acid: Acetic acid can be a hazardous chemical if not used in a safe and appropriate manner. This liquid is highly corrosive to the skin and eyes and, because of this, must be handled with extreme care. Acetic acid can also be damaging to the internal organs if ingested or in the case of vapor inhalation.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Principle                                                                                                                                                | Determination by high-performance liquid chromatography (HPLC), with detection by ultraviolet spectrophotometry at several wavelengths, and by spectrofluorimetry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Apparatus                                                                                                                                                | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>A high-performance liquid chromatograph capable of functioning in binary gradient mode and equipped with:</li> <li>A spectrophotometric detector capable of measuring at wavelengths from 280 to 313 nm. It is however preferable to work with a multiple wavelength detector with a diode array or similar, in order to confirm the purity of the peaks.</li> <li>A spectrofluorimetric detector – excitation wavelength: 354 nm, emission wavelength: 446 nm (for the trace determination of scopoletin; which is also detectable at 313 nm by spectrophotometry).</li> <li>An injection device capable of introducing 10 or 20 μL of the test sample.</li> <li>A high-performance liquid chromatography column, RP C18 type, 5μm maximum particle size.</li> <li>Syringes for HPLC.</li> <li>Device for membrane-filtration of small volumes.</li> <li>Integrator-computer or recorder with performance compatible with the entire apparatus, and in particular, it must have several acquisition channels.</li> </ol> |  |
| Materials and Reagents                                                                                                                                   | <ol> <li>Alcoholic beverages.</li> <li>The reagents must be of analytical quality. The water used must be distilled water or water of at least equivalent purity.</li> <li>Microfiltered water with a resistivity of 18.2 M Ω.</li> <li>96% vol. alcohol.</li> <li>HPLC-quality methanol (Solvent B).</li> <li>Acetic acid.</li> <li>Reference standards of 99% minimum purity</li> <li>Furfural.</li> <li>5-Hydroxymethyl furfural.</li> <li>5-Methylfurfural.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

|                         | 9. Vanillin.                                                                             |  |  |
|-------------------------|------------------------------------------------------------------------------------------|--|--|
|                         | 10. Syringaldehyde.                                                                      |  |  |
|                         | 11. Coniferaldehyde.                                                                     |  |  |
|                         | 12. Sinapaldehyde.                                                                       |  |  |
|                         | 13. Gallic acid.                                                                         |  |  |
|                         | 14. Ellagic acid                                                                         |  |  |
|                         | 15. Vanillic acid.                                                                       |  |  |
|                         | 16. Syringic acids.                                                                      |  |  |
|                         |                                                                                          |  |  |
|                         | 17. Scopoletin.                                                                          |  |  |
| Preparation of reagents | 1. HPLC-quality methanol (Solvent B).                                                    |  |  |
|                         | 2. Acetic acid diluted with Microfiltered water (with a resistivity of 18.2 M $\Omega$ ) |  |  |
|                         | to 0.5% vol. (Solvent A).                                                                |  |  |
|                         | 3. Mobile phases: Solvent A (0.5% acetic acid) and solvent B (pure methanol).            |  |  |
|                         | Filter through a membrane (porosity 0.45 μm).                                            |  |  |
|                         | 4. Degas in an ultrasonic bath, if necessary.                                            |  |  |
|                         | Reference solution - the standard substances are dissolved in a 50% vol.                 |  |  |
|                         | aqueous-alcoholic solution.                                                              |  |  |
|                         | 5. Furfural: 5 mg/L.                                                                     |  |  |
|                         |                                                                                          |  |  |
|                         | 6. 5-Hydroxymethyl furfural: 10 mg/L.                                                    |  |  |
|                         | 7. 5-Methylfurfural 2 mg/L.                                                              |  |  |
|                         | 8. Vanillin: 5 mg/L.                                                                     |  |  |
|                         | 9. Syringaldehyde: 10 mg/L.                                                              |  |  |
|                         | 10. Coniferaldéhyde: 5 mg/L.                                                             |  |  |
|                         | 11. Sinapaldehyde: 5 mg/L.                                                               |  |  |
|                         | 12. Gallic acid: 10 mg/L.                                                                |  |  |
|                         | 13. Ellagic acid: 10 mg/L.                                                               |  |  |
|                         | 14. Vanillic acid: 5 mg/L.                                                               |  |  |
|                         | 15. Syringic acid: 5 mg/L.                                                               |  |  |
|                         | 16. Scopoletin: 0.5 mg/L.                                                                |  |  |
| Sample Preparation      | Preparation of the samples for injection - The reference solution and the spirit         |  |  |
| Sample 1 reparation     | drink are filtered if necessary through a membrane with a maximum pore                   |  |  |
|                         | • •                                                                                      |  |  |
| 3.5 (1 1 6 4 1 1        | diameter of 0.45 μm.                                                                     |  |  |
| Method of Analysis      | Chromatographic operating conditions:                                                    |  |  |
|                         | 1. Carry out the analysis at ambient temperature.                                        |  |  |
|                         | 2. Flow rate – 0.6 mL/min                                                                |  |  |
|                         | 3. Gradient (given as an example only)                                                   |  |  |
|                         | Time: 0 min 50 min 70 min 90 min                                                         |  |  |
|                         | solvent A (water-acid): 100% 60% 100% 100%                                               |  |  |
|                         | solvent B (methanol): 0% 40% 0%                                                          |  |  |
|                         | Note that in certain cases this gradient should be modified to avoid co-elutions.        |  |  |
|                         | Determination                                                                            |  |  |
|                         | 4. Inject the reference standards separately, then mixed.                                |  |  |
|                         | 5. Adapt the operating conditions so that the resolution factors of the peaks of         |  |  |
|                         | all the compounds are equal to at least 1.                                               |  |  |
|                         |                                                                                          |  |  |
|                         | 6. Inject the sample as prepared in FSSAI 13.010:2021, after filtering it through        |  |  |
|                         | a membrane.                                                                              |  |  |
|                         | 7. Measure the area of the peaks in the reference solution and the spirit drink          |  |  |
|                         | and calculate the concentrations.                                                        |  |  |
|                         |                                                                                          |  |  |

| Calculation with units of | Calculate the concentration of each constituent by compare the peak areas of                                                                                                                                                       |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| expression                | respective constituent in reference solution and spirit drinks.                                                                                                                                                                    |  |
|                           | Express the concentration of each constituent in mg/L.                                                                                                                                                                             |  |
| Reference                 | Compendium of International Methods of Spirituous Beverages Of Vitivinicultural Origin by International Organisation Of Vine And Wine, Edition 2019, Principal compounds extracted from wood during ageing Method No. OIV-MA-BS-16 |  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                               |  |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Wellers, Covernment of India | Determination of α-dicarbonyl Compounds in Spirituous Beverages of Vitivinicultural Origin by Gas Chromatography after derivation by 1,2 diaminobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Method No.                                                                                                                                               | FSSAI 13.044:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Revision No. & Date 0.0                                                            |
| Scope                                                                                                                                                    | The principal α-Dicarbonyl compounds found in wine spirits are: Glyoxal, Methylglyoxal, Diacetyl and Pentane-2,3-dione.  Their molecular formulas are:  (i) Glyoxal: OCH-CHO (ethanedial)  (ii) Methylglyoxal: CH3-CO-CHO (2-oxopropanal)  (iii) Diacetyl: CH3-CO-CO-CH3 (butane-2,3-dione)  (iv) Pentane-2,3-dione: CH3-CH2-CO-CO-CH3  (v) Hexane-2,3-dione: CH3-CH2-CH2-CO-CO-CH3  The principal α-dicarbonyl compounds of wine (hexane-2,3-dione is not naturally present in wine but it is used as internal standard).  Dicarbonyl compounds are important because of their sensory impact Applicability: This method applies to spirituous beverages of viti-vinicultural origin, for a content of carbonyl compounds included between 0.05 mg/L and 20 mg/L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |
| Caution                                                                                                                                                  | origin, for a content of carbonyl compounds included between 0.05 mg/L and 20 mg/L.  1. 1,2-Diaminobenzene: Toxic if swallowed. Harmful in contact with skin or if inhaled. May cause an allergic skin reaction.  2. Sulphuric acid: Concentrated sulfuric acid is extremely corrosive and can cause serious burns when not handled properly. This chemical is unique because it not only causes chemical burns, but also secondary thermal burns as a result of dehydration. This dangerous chemical is capable of corroding skin, paper, metals, and even stone in some cases. If sulfuric acid makes direct contact with the eyes, it can cause permanent blindness. If ingested, this chemical may cause internal burns, irreversible organ damage, and possibly death.  3. Acetic acid: Acetic acid can be a hazardous chemical if not used in a safe and appropriate manner. This liquid is highly corrosive to the skin and eyes and, because of this, must be handled with extreme care. Acetic acid can also be damaging to the internal organs if ingested or in the case of vapor inhalation.  4. Sodium hydroxide: Sodium hydroxide is strongly irritating and corrosive. It can cause severe burns and permanent damage to any tissue that it comes in contact with. Sodium hydroxide can cause hydrolysis of proteins, and hence can cause burns in the eyes which may lead to permanent eye damage.  5. Dichloromethane: Higher levels of dichloromethane inhalation can lead to headache, mental confusion, nausea, vomiting, dizziness and fatigue. Skin Exposure - Redness and irritation may occur if skin comes in contact with liquid dichloromethane and, if it remains on the skin for an extended period |                                                                                    |
| Principle                                                                                                                                                | of time, it may lead to  The method is based of dicarbonyl compounds w  NH2  + O  R1  1,2-diaminobenzene oc-Dicar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on the formation of quinoxaline derivatives from $\alpha$ - ith 1,2-diaminobenzene |

|                         | Formation of 1,2-Diaminobenzene Dicarbonyl Quinoxaline derivative                                         |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------|--|
|                         |                                                                                                           |  |
|                         | Formation of derivatives.                                                                                 |  |
|                         | The reaction takes place in the spirituous beverage diluted four-fold, pH 8 and                           |  |
|                         | after a reaction time of 3 h at 60 °C. The analysis of the derivatives is then                            |  |
|                         | carried out after extraction of the derivatives by dichloromethane and analysis by                        |  |
|                         | gas chromatography with detection by mass spectrometry (GC-MS) or using a                                 |  |
|                         | specific detector of nitrogenous compounds.                                                               |  |
| Apparatus / Instruments | 1. General Glassware and apparatus (Refer 2.0 at page no. 2).                                             |  |
|                         | 2. Gas chromatography with detection by mass spectrometry (GC-MS) or using                                |  |
|                         | a special nitrogenised compound detector.                                                                 |  |
|                         | 3. Moderately polar, polyethylene glycol capillary column (such as the                                    |  |
|                         | Carbowax 20M, BP21) with the following dimensions (as an example):50 m                                    |  |
|                         | X 0.32 mm X 0.25 μm.                                                                                      |  |
|                         | <ul><li>4. Data acquisition system.</li><li>5. pH measuring apparatus.</li></ul>                          |  |
|                         | <ul><li>6. Magnetic stirrer.</li></ul>                                                                    |  |
|                         | 7. Oven which can be set to 60 °C.                                                                        |  |
|                         | 8. 30 mL screw-cap flasks.                                                                                |  |
|                         | 9. Micro syringes.                                                                                        |  |
| Materials and Reagents  | Alcoholic beverages.                                                                                      |  |
| Traverius und Treagenes | 2. Glyoxal (in a 40% solution).                                                                           |  |
|                         | 3. Methylglyoxal (in a 40% solution).                                                                     |  |
|                         | 4. Diacetyl (> 99% pure).                                                                                 |  |
|                         | 5. Pentane-2,3-dione (> 97% pure).                                                                        |  |
|                         | 6. Hexane-2,3-dione (> 90% pure). 7. 1,2-Diaminobenzene in the form of powder, > 97% pure.                |  |
|                         | 7. 1,2-Diaminobenzene in the form of powder, > 97% pure.                                                  |  |
|                         | <ul><li>8. Water for HPLC (according to standard EN ISO 3696).</li><li>9. Ethanol (HPLC grade).</li></ul> |  |
|                         | <ul><li>9. Ethanol (HPLC grade).</li><li>10. Sodium hydroxide.</li></ul>                                  |  |
|                         |                                                                                                           |  |
|                         | 11. Acetic acid - pure crystallisable.                                                                    |  |
|                         | 12. Dichloromethane. 13. Anhydrous sodium sulphate.                                                       |  |
|                         |                                                                                                           |  |
| D 4' 6 4                | 14. Sulphuric acid.                                                                                       |  |
| Preparation of reagents | 1. 50% vol. hydroalcoholic solution - Mix 50 mL of pure ethanol for HPLC, with 50 mL of water.            |  |
|                         | 2. Solution of internal standard hexane-2,3-dione at 2.0 g/L. Place 40 mg of                              |  |
|                         | hexane-2,3-dione in a 30 mL flask, dilute in 20 mL of 50% vol.                                            |  |
|                         | hydroalcoholic solution, stir until complete dissolution.                                                 |  |
|                         | 3. Sodium Hydroxide (0.1M): Dissolve sodium hydroxide (4 g) in 100 mL                                     |  |
|                         | water.                                                                                                    |  |
|                         | 4. Sulphuric acid 2M (H <sub>2</sub> SO <sub>4</sub> 2M): Dilute concentrated sulphuric acid (11 mL)      |  |
|                         | to 100 mL with water.                                                                                     |  |
| Samples Preparation     | Dilute the spirituous beverage four-fold in water.                                                        |  |
| Method of Analysis      | 1. Place 10 mL of spirituous beverage (diluted four-fold) in a 30 mL flask.                               |  |
| _                       | 2. Bring to pH 8 while stirring, with sodium hydroxide 0.1 M.                                             |  |
|                         | 3. Add 5 mg of 1,2-diaminobenzene.                                                                        |  |
|                         | 4. Add 10 μL of hexane-2,3-dione (internal standard@ at 2.0 g/L).                                         |  |
|                         | 5. Close the flask using a screw-cap fitted with a Teflon-faced seal. Stir until                          |  |

the reagent has completely disappeared.

- 6. Place in the oven at 60 °C for 3 h.
- 7. Cool.

Analysis

Extraction of quinoxalines

- 8. Bring the reaction medium to pH 2 using sulphuric acid 2M.
- 9. Extract 2 times using 5 mL of dichloromethane by magnetic stirring for 5 min.
- 10. Elutriate the lower phase each time.
- 11. Mix all the solvent phases.
- 12. Dry on approximately 1 g of anhydrous sodium sulphate.
- 13. Elutriate.

Chromatographic analysis (given as an example)

14. Detection: For GC-MS analysis, a Hewlett Packard HP 5890 gas-phase chromatograph was coupled with a chemstation and an HP 5970 mass spectrometer (electron impact 70eV, 2.7 kV),

Note: A specific detector of the nitrogenous compounds can be used.

- 15. Column. The column is a BP21 (SGE, 50 m x 0.32 mm x 0.25  $\mu$ m).
- 16. Temperatures. The temperatures of the injector and the detector are 250 °C and 280 °C respectively; the oven is kept at 60 °C for 1 min. then programmed to increase at the rate of 2 °C/min. to 220 °C, and the final isotherm lasting 20 min.
- 17. Injection. The volume injected is 2  $\mu$ L and the closing time of the injector valves (splitless) is 30 s.
- 18. Gases as per the instructions from manufacturer.

Analysis of quinoxalines formed.

- 19. Separation: The chromatogram of the derivatives by 1,2-diaminobenzene of a wine according to the ion selection method (SIM).
- 20. Identification of the peaks GC-MS was used to identify the dicarbonyl compounds derived from the wine spirit based on the total ionic current method (scan) which is used to obtain the mass spectra of quinoxaline derivatives and to compare them with those memorised in the spectra library.
- 21. The retention times were compared with those for pure compounds treated in the same way.
- 22. The principal ions of the mass spectra for the obtained dicarbonyl compound derivatives are provided below.
- 23. Proportioning. The quantitative determination of the dicarbonyl compounds is carried out with the SIM method, by selecting ions M/Z = 76, 77, 103, 117, 130, 144, 158 and 171.
- 24. The ions M/Z = 76 and 77 are used for the quantification.
- 25. The others as qualifiers, i.e.
- (i) glyoxal: ions M/Z = 103 and 130,
- (ii) methylglyoxal: ions M/Z = 117 and 144,
- (iii) diacetyl: ions M/Z = 117 and 158,
- (iv) pentan-2,3-dione: ions M/Z = 171 and
- (v) hexane-2,3-dione: ions M/Z = 158 and 171.

Characteristics of the method:

26. Some internal validation was defined but these are not a formal validation as per the protocol governing the planning, the implementing and the

|                           | interpreting of the performance studies relating to the analysis methods. Repeatability. |  |  |  |
|---------------------------|------------------------------------------------------------------------------------------|--|--|--|
|                           | 27. The repeatability of the GC-MS-SIM method displays variation coefficients            |  |  |  |
|                           |                                                                                          |  |  |  |
|                           | ranging between 2 and 5% for the four dicarbonyl compounds.                              |  |  |  |
|                           | Recovery rate.                                                                           |  |  |  |
|                           | 28. The quantities added to a wine were recovered within a below 6% deviation            |  |  |  |
|                           | from expected results.                                                                   |  |  |  |
|                           | Linearity.                                                                               |  |  |  |
|                           | 29. Linear correlations were obtained in concentration domains ranging betwee            |  |  |  |
|                           | 0.05 to 20 mg/L.                                                                         |  |  |  |
|                           | Detection limit.                                                                         |  |  |  |
|                           | 30. The detection limit of most of the derived dicarbonylated products is 0.05           |  |  |  |
|                           | mg/L.                                                                                    |  |  |  |
| Calculation with units of | Mass spectra (ion m/z (intensity of the molecular ion in relation to that of the         |  |  |  |
| expression                | basic peak) of derivatives of dicarbonyl compounds by 2,3 diaminobenzene are             |  |  |  |
| chpi ession               | provided below:                                                                          |  |  |  |
|                           |                                                                                          |  |  |  |
|                           | Dicarbonylated Derivative Mass spectrum                                                  |  |  |  |
|                           | (principal compound ions and abundance)                                                  |  |  |  |
|                           | ,                                                                                        |  |  |  |
|                           | 1. Glyoxal Quinoxaline: 130(100), 103 (56.2), 76(46.8), 50(20.2)75 (10.4), 131           |  |  |  |
|                           | (9.4).                                                                                   |  |  |  |
|                           | 2. Methylglyoxal 2-Methyl quinoxaline: 144 (100), 117 (77.8), 76(40.5), 77               |  |  |  |
|                           | (23.3)50 (21.9), 75 (11.3), 145(10.3).                                                   |  |  |  |
|                           | 3. Diacetyl 2,3-Dimethyl quinoxaline: 117 (100), 158 (75.6), 76(32.3),                   |  |  |  |
|                           | 77(23.1)50 (18.3), 75 (10.4).                                                            |  |  |  |
|                           | 4. Pentane-2,3-dione 2-Ethyl-3-methylquinoxaline 171 (100), 172 (98),                    |  |  |  |
|                           | 130(34.1), 75 (33.3),77 (21), 50 (19.4), 144(19), 143 (14.1),103 (14).                   |  |  |  |
|                           | 5. Hexane-2,3-dione 2,3-Diethylquinoxaline 158 (100), 171 (20.1), 76(13.7), 77           |  |  |  |
|                           | (12.8), 159 (11.4),157 (10.8), 50 (8.1).                                                 |  |  |  |
| Reference                 | Compendium of International Methods of Spirituous Beverages Of                           |  |  |  |
|                           | Vitivinicultural Origin by International Organisation Of Vine And Wine, Edition          |  |  |  |
|                           | 2019, Analysis of α-diacarbonyl compounds by gaschromatography after                     |  |  |  |
|                           | derivation by 1,2-Diaminobenzene, Method, Method No. OIV-MA-BS-17                        |  |  |  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                                     |  |  |  |
|                           |                                                                                          |  |  |  |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA                                                                   | Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of Propan-2-ol by Gas Ch                                    | romatography                                                                |  |  |  |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|
| Inspiring Trust, Assuring Safe & Nutritious Food<br>Ministry of Health and Family Welfare, Government of India | F00 A1 12 045 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D · · · N · · · · · · · · · · · · · · ·                     |                                                                             |  |  |  |
| Method No.                                                                                                     | FSSAI 13.045:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Revision No. & Date                                         | 0.0                                                                         |  |  |  |
| Scope                                                                                                          | This assay is not part of the official determinations provided by the international regulations, but is quite often requested since propan-2-ol is not a natural constituent of fermented beverages of vinous origin. It may be added to the alcohol during its denaturation. The presence (or more accurately lack thereof) of this compound must be verifiable. In addition it may be present in various alcoholic beverages.                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                                                             |  |  |  |
| Caution                                                                                                        | dizziness. Causes seri<br>exposure to high conce<br>2. Pentan-1-ol: This subs<br>inhaled, causes skin irr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tance is a flammable liquid itation and may cause respirate | s/effects after inhalation-<br>and vapour, is harmful if<br>tory irritation |  |  |  |
| Principle                                                                                                      | The separation of propa chromatography.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n-2-ol from ethanol is carri                                | ed out by means of gas                                                      |  |  |  |
| Apparatus / Instruments  Materials and Reagents                                                                | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>Gas chromatograph equipped with a flame ionization detector.</li> <li>Classic stainless steel column 6 m long and with an internal diameter of 2 mm and Stationary phase - for example, coated with diglycerol at 5% on Chromosorb P 60-80 mesh (0.22 to 0.32 mm).</li> <li>Note: It is also possible to use a mixture of phases known as the ESD: Erythritol, sorbitol, diglycerol respectively at 1%, 2.5%, and 5% weight of the support (it can be used in other phases: porapak, poraplot, etc.)</li> <li>Nitrogen R * carrier gas (Air Liquid standard).</li> <li>Oven: Isothermal temperature 80 °C.</li> <li>The settings of the various gas flows must be performed to obtain proper performance of the chromatograph.</li> <li>Alcoholic beverages.</li> </ol> |                                                             |                                                                             |  |  |  |
|                                                                                                                | 2. Propan-2-ol. 3. Pentan-1-ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             |                                                                             |  |  |  |
| Sample Preparation                                                                                             | <ol> <li>For a qualitative test, the sample of the alcoholic beverage can be injected directly into the gas chromatograph (1 to 2 μL).</li> <li>For accurate dosing is possible to use an internal standard separated from the other alcohols such as pentan-1-ol.</li> <li>Pentan-1-ol content must be the same order of magnitude as that of the propan-2-ol.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |                                                                             |  |  |  |
| Method of Analysis                                                                                             | Assay:  1. Depending on whether the purpose is to detect the presence of the propan-2-ol or measure it, a reference solution of propan-2-ol must be injected into the pure alcohol, its content depending on the required dose (in principle several grams per litre).  2. For accurate dosing the internal calibration method will be applied using pentan-1-ol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             |                                                                             |  |  |  |
| Calculation with units of expression                                                                           | The concentrations of propan-2-ol will be calculated using the traditional method in gas chromatography with the use of an internal standard (c.f. volatile substances) and expressed in g/hL of alcohol at 100% vol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                             |  |  |  |

| Reference   | Compendium                                                                      | of                                                   | International | Methods | of | Spirituous | Beverages | Of |
|-------------|---------------------------------------------------------------------------------|------------------------------------------------------|---------------|---------|----|------------|-----------|----|
|             | Vitivinicultural Origin by International Organisation Of Vine And Wine, Edition |                                                      |               |         |    |            |           |    |
|             | 2019, Propan-2-ol by GC, Method No. OIV-MA-BS-20                                |                                                      |               |         |    |            |           |    |
| Approved by | Scientific Pane                                                                 | Scientific Panel on Methods of Sampling and Analysis |               |         |    |            |           |    |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Government of India | Determination of A                                                                                                                                                                                                                                                            | bsorbance Test in UV light o                                                                                                                                                                                                              | of Neutral Alcohol |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|
| Method No.                                                                                                                                               | FSSAI 13.046:2021                                                                                                                                                                                                                                                             | Revision No. & Date                                                                                                                                                                                                                       | 0.0                |  |  |  |
| Scope                                                                                                                                                    |                                                                                                                                                                                                                                                                               | o determine the optical perme<br>aposition of certain alcoholic b                                                                                                                                                                         |                    |  |  |  |
| Caution                                                                                                                                                  | If swallowed, it may cau                                                                                                                                                                                                                                                      | Hexane: Chronic exposure can cause more severe damage to the nervous system. If swallowed, it may cause severe abdominal pain and impact the respiratory system, resulting in shortness of breath, coughing, burning of the mouth, throat |                    |  |  |  |
| Principle                                                                                                                                                | The optical permeability of the sample in the wavelength range from 220 to 270 nm is measured against a defined reference substance with high optical permeability.                                                                                                           |                                                                                                                                                                                                                                           |                    |  |  |  |
| Apparatus /Instruments                                                                                                                                   | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>UV-visible spectrophotometer.</li> <li>Quartz cells 10 mm thick, with identical spectral transmission.</li> </ol>                                                                                |                                                                                                                                                                                                                                           |                    |  |  |  |
| Materials and Reagents                                                                                                                                   | <ol> <li>Alcoholic beverages.</li> <li>Hexane for spectroscopy.</li> </ol>                                                                                                                                                                                                    |                                                                                                                                                                                                                                           |                    |  |  |  |
| Method of analysis                                                                                                                                       | <ol> <li>Rinse the tanks clean beforehand with a sample solution and then fill with the sample, dry the tanks outside.</li> <li>Treat the reference cell (n) with hexane in the same way and fill it.</li> <li>Determine the absorbance value and build the graph.</li> </ol> |                                                                                                                                                                                                                                           |                    |  |  |  |
| Calculation with units of expression                                                                                                                     | The absorbance values recorded at 270, 240, 230 and 220 nm should not exceed the following values: 0.02, 0.08, 0.18 and 0.3. The absorbance curve must be smooth and regular.                                                                                                 |                                                                                                                                                                                                                                           |                    |  |  |  |
| Reference                                                                                                                                                | Compendium of International Methods of Spirituous Beverages of Vitivinicultural Origin by International Organisation Of Vine And Wine, Edition 2019, Ultraviolet light test for neutral alcohol, Method No. OIV-MA-BS-21                                                      |                                                                                                                                                                                                                                           |                    |  |  |  |
| Approved by                                                                                                                                              | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |                    |  |  |  |

|                                                                                                                                                          | Determination of Ethyl Carbamate                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Welfare, Government of India |                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             |  |  |  |
| Method No.                                                                                                                                               | FSSAI 13.047:2021                                                                                                                                                                                                                                                                                                                                                                                               | Revision No. & Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                         |  |  |  |
| Scope                                                                                                                                                    | Ethyl carbamate (EC), also known as urethane, is a compound found in fermented foods and beverages. It's also a known carcinogen. The formation and distribution of ethyl carbamate (urethane) occurs during pot still distillation. When copper was present, during and subsequent to distillation, formation of ethyl carbamate was time-dependent. The degree of formation was maximised between pH 4 and 6. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             |  |  |  |
| Caution                                                                                                                                                  | cause harm to breast-fe 2. Dichloromethane: Hig headache, mental cont Exposure - Redness at liquid dichloromethane of time, it may lead to                                                                                                                                                                                                                                                                      | <ol> <li>Ethyl carbamate: May be harmful if swallowed. May cause cancer. May cause harm to breast-fed children. May cause damage to the nervous system.</li> <li>Dichloromethane: Higher levels of dichloromethane inhalation can lead to headache, mental confusion, nausea, vomiting, dizziness and fatigue. Skin Exposure - Redness and irritation may occur if skin comes in contact with liquid dichloromethane and, if it remains on the skin for an extended period</li> </ol> |                                                                                                                                                             |  |  |  |
| Principle                                                                                                                                                | coupled to a mass spectro in "Selected Ion Monitoria                                                                                                                                                                                                                                                                                                                                                            | y direct injection of the drink in meter operating under the pring (SIM)" acquisition mode.                                                                                                                                                                                                                                                                                                                                                                                           | nciple of electron impact,                                                                                                                                  |  |  |  |
| Apparatus / Instruments                                                                                                                                  | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>Gas chromatography with detection by mass spectrometry (GC-MS).</li> <li>Capillary column of the Carbowax 20 M (50 m x 0.22 mm) type, film thickness 0.2 μm.</li> <li>Data acquisition system.</li> </ol>                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             |  |  |  |
| Materials and Reagents                                                                                                                                   | <ol> <li>Alcoholic beverages.</li> <li>Propyl carbamate (Refered)</li> <li>Ethyl carbamate (Refered)</li> <li>Ethanol.</li> <li>Distilled water.</li> <li>Ether.</li> <li>Sodium sulphate.</li> <li>Porus polymer (of Extrem)</li> <li>Dichloro methane</li> </ol>                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                             |  |  |  |
| Preparation of reagents                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                 | te (100 mg/L) in a 50% vol. ed is free of ethyl carbamate).                                                                                                                                                                                                                                                                                                                                                                                                                           | hydroalcoholic solution.                                                                                                                                    |  |  |  |
| Sample Preparation                                                                                                                                       | carbamate (at 100 mg/l<br>Note: this final quantity of<br>according to the ethyl of<br>2. In the case of sweet<br>internal standard it is<br>following methods<br>3. Method 1: Extract the<br>with excess sodium sul<br>4. Method 2: Fixing the                                                                                                                                                                 | andard nolic beverage, add 50 µL o L) which results in 1 mg/L in t of the internal standard in the starbamate content in the media alcoholic beverages (over 1) preferable to extract the eth ethyl carbamate with ether aft phate to fix the water (or) the carbamates (ethyl carbam polymer (of Extrelut type) f                                                                                                                                                                    | the sample.  sample can be modulated um to be analyzed.  O g/L), after adding the ayl carbamate as per the ter saturating the medium mate and them internal |  |  |  |

|                                      | dichloromethane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Method of analysis                   | <ol> <li>Capillary column of the Carbowax 20 M (50 mx 0.22 mm) type, film thickness 0.2 μm.</li> <li>Temperature programming from 60 to 200 °C, 3 °C per minute.</li> <li>Data acquisition method of the mass spectrometer: Selected Ion Monitoring (SIM), MZ = 62, 74, 84.</li> <li>The chromatograms are re-processed with the single ion M/Z = 62. The other ions are used to confirm peak purity by taking into account the ratio of their respective intensities.</li> <li>Note: Certain NP or Hall sensors can be used.</li> <li>PREPARATION OF THE REFERENCE SOLUTION</li> <li>According to the alcoholic beverage to be analyzed, prepare a solution of ethyl carbamate at 50 μg/L or 400 μg/L or more if necessary.</li> <li>5 mL of the reference solution are added by 50 μL of the internal standard solution (propyl carbamate at 100 mg/L).</li> <li>The solution is injected using the Splitless mode (valve closure for 20 to 30 seconds) by 2 μL of the prepared solution into the chromatograph after being properly adjusted.</li> </ol> |  |  |  |  |
| Calculation with units of expression | The ethyl carbamate is expressed in $\mu g/L$ of the spirit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Reference                            | Compendium of International Methods of Spirituous Beverages of Vitivinicultural Origin by International Organisation of Vine And Wine, Edition 2019, Ethyl carbamate, Method No. OIV-MA-BS-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Approved by                          | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Wellians, Covernment of India | Determination of Colour Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Method No.                                                                                                                                                | FSSAI 13.048:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Scope                                                                                                                                                     | Alcoholic beverage of a natural "golden yellow" colour.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Principle                                                                                                                                                 | Colour intensity is determined by measuring the absorbance at 445 nm for an optical length of 1 cm thick (for traditional alcoholic beverages).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Apparatus / Instruments                                                                                                                                   | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>A spectrophotometer enabling measurements at different wavelengths.</li> <li>Glass tanks with an optical path length of 1 cm and 0.2 cm.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| <b>Materials and Reagents</b>                                                                                                                             | 1. Alcoholic beverages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Method of analysis                                                                                                                                        | <ol> <li>Measure the absorbance at the wavelength 445 nm of the alcoholic beverage placed in a glass tank with an optical path length of 1 cm by setting the zero of the absorbance scale compared with distilled water.</li> <li>Remarks.</li> <li>It is possible to measure the absorbance at any wavelength for alcoholic beverages naturally aged in wood and/or supplemented by caramel and/or supplemented by "woody" brandies because in all cases the absorption curves are continuous, without any maximum, or even a significant change in slope.</li> <li>Taking into account the maximum perceived by human vision it would be preferable to perform the measurement at 530 nm.</li> <li>The hue or hue gamut between two alcoholic beverages can be expressed, in certain cases, by measuring absorbance at 620 nm.</li> <li>Theoretically the sample should not be filtered if it is a product intended for direct consumption, but care should be taken to ensure that the sample is free of particles that are not a priori contained in the alcoholic beverage, especially those resulting from corking.</li> <li>Alcoholic beverage containing synthetic dyes.</li> <li>First, the absorption maximum should be measured, and then the wavelength corresponding to the selected maximum, if necessary using a tank with an optical path length of 0.2 cm.</li> </ol> |  |  |  |  |
| Calculation with units of                                                                                                                                 | Express the colour intensity by the absorbance measured under the conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| expression                                                                                                                                                | specified above, indicating the size of the colorimeter tank, and the chosen wavelength.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Reference                                                                                                                                                 | Compendium of International Methods of Spirituous Beverages of Vitivinicultural Origin by International Organisation of Vine And Wine, Edition 2019, Colour intensity, Method No. OIV-MA-BS-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Approved by                                                                                                                                               | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA  Inspiring Trust, Assuring Safe & Nutritious Food  Ministry of Health and Family Welfare, Government of India | Determination of Calcium by Atomic Absorption Spectrophotometric (AAS) Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Method No.                                                                                                                                                 | FSSAI 13.049:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Revision No. & Date                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                   |  |  |
| Scope                                                                                                                                                      | Calcium present in the alc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oholic beverages is determine                                                                                                                                                                                                                                                                                                | d.                                                                                                                                                                    |  |  |
| Caution                                                                                                                                                    | 1. Hydrochloric acid: Hydrochloric acid is a hazardous liquid which must be used with care. The acid itself is corrosive, and concentrated forms release acidic mists that are also dangerous. If the acid or mist come into contact with the skin, eyes, or internal organs, the damage can be irreversible or even fatal in severe cases.                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                       |  |  |
| Principle                                                                                                                                                  | Calcium is determined by atomic absorption spectrophotometry with a reductive air acetylene flame using a calcium hollow-cathode lamp, wavelength of 422.7 nm, on the dealcoholised alcoholic beverage, concentrated 2 times. The measurement is performed in the presence of lanthanum chloride referred to as the "matrix modifier".                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                       |  |  |
| Apparatus / Instruments                                                                                                                                    | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>Volumetric flasks -25, 50, 100, 1000 mL.</li> <li>Volumetric pipettes -1, 2, 3, 4, 10, 50 mL.</li> <li>Test tube- 100 mL.</li> <li>Beaker -250 mL.</li> <li>Tablet bottle - 20 mL.</li> <li>Atomic absorption Spectrophotometer (sample setting for Varian 575 model).</li> <li>Reducing air-acetylene flame, flow rates: air: 7.5 V<sub>min</sub>.</li> <li>C2 H2: 4.0 V<sub>min</sub>.</li> <li>Calcium hollow-cathode lamp with calcium; Wavelength: 422.7 nm, slit (slit): 0.2 nm, lamp intensity: 5 mA.</li> </ol> |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                       |  |  |
| Materials and Reagents                                                                                                                                     | <ol> <li>Ultrapure demineralise</li> <li>Stock solution 1 g/l of</li> <li>Hydrochloric acid d =</li> <li>Lanthanum chloride (I</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d water resistivity 18.2 M $\Omega$ .<br>Calcium: (e.g. Titrisol Merck)<br>1.18 (35% minimum).<br>$\alpha Cl_3.6H_2O$ )                                                                                                                                                                                                      |                                                                                                                                                                       |  |  |
| Preparation of reagents                                                                                                                                    | <ol> <li>Solution of 100 mg/L flask, fill to volume wi</li> <li>Lanthanum Chloride (LaCl<sub>3</sub>.6H<sub>2</sub>O) in a demineralised water, t solubilisation, allow to</li> <li>Calibration range: 2, 4</li> <li>mL of the solution of the solution of the solution of lant</li> </ol>                                                                                                                                                                                                                                                                                                           | of calcium: Place 10 mL of st<br>th demineralised water.<br>Solution, 25 g/L: Weigh 63.6<br>1000 mL flask, add appr<br>hen to the test tube 50 mL of<br>cool and fill to volume with 6<br>6, 8 mg/L of calcium: Place at<br>at 100 mg/L Calcium in four<br>nanum chloride, and fill to vo-<br>test without calcium in the sa | g of lanthanum chloride oximately 500 mL of hydrochloric acid. After lemineralised water. successively 1.0, 2.0, 3.0, 50 mL vials, add 10 mL olume with demineralised |  |  |
| Sample Preparation                                                                                                                                         | The calcium content is necessary to concentra mL of the alcoholic be a water bath to about of 2. Leave to cool.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n alcoholic beverages is often<br>te the sample by evaporating<br>verage into a 250 mL beaker.                                                                                                                                                                                                                               | very low, it is therefore<br>the alcohol. Pipette 50<br>Evaporate the alcohol in                                                                                      |  |  |

|                           | with demineralised water.                                                       |  |  |  |  |
|---------------------------|---------------------------------------------------------------------------------|--|--|--|--|
|                           | 4. Place 4 mL of this solution to be determined prepared in a clean, dry tablet |  |  |  |  |
|                           | bottle with 1 mL of lanthanum chloride solution.                                |  |  |  |  |
|                           | 5. Cork it and stir.                                                            |  |  |  |  |
| Method of analysis        | 1. Successively present the calibration solutions, the blank solution, and the  |  |  |  |  |
| -                         | samples.                                                                        |  |  |  |  |
|                           | 2. Note the corresponding absorbance.                                           |  |  |  |  |
| Calculation with units of | 1. Establish the calibration curve absorbance = f (concentration in mg/L        |  |  |  |  |
| expression                | calcium) by the least squares method.                                           |  |  |  |  |
|                           | 2. Deduce the concentration of calcium in mg/L taking into account the          |  |  |  |  |
|                           | concentration factor.                                                           |  |  |  |  |
| Reference                 | Compendium of International Methods of Spirituous Beverages Of                  |  |  |  |  |
|                           | Vitivinicultural Origin by International Organisation of Vine And Wine, Edition |  |  |  |  |
|                           | 2019, Determination of calcium by atomic absorption, Method No. OIV-MA-         |  |  |  |  |
|                           | BS-29                                                                           |  |  |  |  |
| Approved by               | Scientific Panel on Methods of Sampling and Analysis                            |  |  |  |  |

| FOOD SAFETY AND STANDARDS AUTHORITY OF INDIA Inspiring Trust, Assuring Safe & Nutritious Food Ministry of Health and Family Wallers, Occumented of India | Determination of Lead by Atomic Absorption Spectrophotometric (AAS)  Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Method No.                                                                                                                                               | FSSAI 13.050:2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Revision No. & Date 0.0                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Scope                                                                                                                                                    | Lead present in the alcoholic beverages is determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Caution                                                                                                                                                  | <ol> <li>Phosphoric acid: Phose contact, eye contact, a inhaled. Repeated or chronic eye irritation, issues.</li> <li>Nitric acid: May be far severe respiratory and other material may</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sphoric acid can be very hazardous in the case of skin and ingestion. It can also cause irritation if vapors are prolonged exposure to phosphoric acid mist can lead to severe skin irritation, or prolonged respiratory tract tal if inhaled. Causes severe eye and skin burns. Causes digestive tract burns. Strong oxidizer. Contact with cause a fire. Acute pulmonary edema or chronic use may occur from inhalation of the vapors of nitric |  |  |  |
|                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | metal. Target Organs: Lungs, eyes, skin, mucous                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Principle                                                                                                                                                | Lead is determined directly in the alcoholic beverage, using a lead hollow-cathode lamp by flameless atomic absorption spectrometry, using a matrix modifier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Apparatus / Instruments                                                                                                                                  | <ol> <li>General Glassware and apparatus (Refer 2.0 at page no. 2).</li> <li>Atomic absorption spectrophotometer equipped with a graphite oven, a nonselective absorption corrector and a multi-potentiometric recorder.</li> <li>Lead hollow-cathode lamp.</li> <li>Micropipettes with special tips for atomic absorption measurements.</li> </ol>                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Materials and Reagents                                                                                                                                   | <ul> <li>All the reagents must be of analytical purity and, in particular must be lead-free.</li> <li>1. The water used must be double-distilled in a borosilicate glass apparatus or with water of equivalent purity.</li> <li>2. Phosphoric acid (ρ20 = 1.71 g/mL).</li> <li>3. Nitric acid (ρ20 = 1.38 g/mL)</li> </ul>                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Preparation of reagents                                                                                                                                  | <ol> <li>4. Lead solution to 1 g/L.</li> <li>1. Phosphoric acid solution: Dilute phosphoric acid (6 mL) to 100 mL with water.</li> <li>2. Lead solution to 1 g/L (Use a standard commercial solution): This solution can be obtained by dissolving 1.600 g of lead nitrate II, Pb (NO<sub>3</sub>)<sub>2</sub> in nitric acid diluted to 1% (v/v) and adjusting the volume to 1 L. Keep the solution in a borosilicate glass bottle with a ground glass stopper.</li> <li>3. Nitric acid solution diluted to 1% (v/v) (solution of phosphoric and nitric acids): The solution is obtained by diluting the phosphoric acid solution at 6% with the nitric acid solution at 1%.</li> </ol> |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Sample Preparation                                                                                                                                       | <ol> <li>Add to the test sample of the alcoholic beverage an equal volume of the solution of phosphoric and nitric acids. Determine its absorbance If it is greater than 0.6, dilute the alcoholic beverage (a dilution of 1/5 is sufficient in most cases).</li> <li>Prepare the test solution by adding to the test sample of the diluted alcoholic beverage an equal volume of the solution of phosphoric and nitric acids.</li> </ol>                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Method of analysis                                                                                                                                       | Preparation of the solutions in the calibration range: Using the control solution of lead, prepare dilutions in which 50% of the final volume is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |

|                                      | solution of phosphoric and nitric acids The concentration scale of the range                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |          |                  |         |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|------------------|---------|--|
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on the sensitivity of |          |                  | •       |  |
|                                      | containing 10 - 20 - 30 micrograms of lead per litre.                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |          |                  |         |  |
|                                      | 2. Determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |          |                  |         |  |
|                                      | 2.1 Oven program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |          |                  |         |  |
|                                      | Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Temperature (°C)      | Time (s) | Nitrogen (L/min) | Reading |  |
|                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75                    | 2        | 3                |         |  |
|                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 95                    | 20       | 3                |         |  |
|                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 140                   | 15       | 3                |         |  |
|                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 300                   | 8        | 3                |         |  |
|                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 450                   | 7        | 3                |         |  |
|                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 480                   | 10       | 3                |         |  |
|                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900                   | 20       | 3                |         |  |
|                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 900                   | 1        | 0                |         |  |
|                                      | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2250                  | 0.7      | 0                | L       |  |
|                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2250                  | 1        | 0                | L       |  |
|                                      | 11 2250 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |          |                  |         |  |
|                                      | <ol> <li>Measurements: Select wavelength 283.3 nm. Set to zero the absorbance scale with double distilled water. Using a micropipette or an automatic sampler, inject into the programmed oven 3 times 5 lt. of each solution in the calibration range and of the solution of the sample to be analysed.</li> <li>Record the measured absorbances. Calculate the mean absorbance value based on the results for the three injections. The absorbances are measured in height of peaks.</li> </ol> |                       |          |                  |         |  |
| Calculation with units of expression | Plot the changes in absorbance versus the concentrations of lead in solutions of the calibration range. The relationship is linear. Record the mean value of the absorbance of the sample solution on the calibration curve and determine then concentration C of lead.  The lead concentration in micrograms per litre of alcoholic beverage is equal to: C × F F = dilution factor.                                                                                                             |                       |          |                  |         |  |
| Reference                            | Compendium of International Methods of Spirituous Beverages of Vitivinicultural Origin by International Organisation of Vine And Wine, Edition 2019, Determination of lead by atomic absorption, Method No. OIV-MA-BS-32                                                                                                                                                                                                                                                                          |                       |          |                  |         |  |
| Approved by                          | Scientific Panel on Methods of Sampling and Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |          |                  |         |  |

## ANNEXURE-I DETERMINATION OF ALCOHOL CONTENT % BY VOL. OF BEVERAGES USING SPECIFIC GRAVITY Vs. ALCOHOL% TABLE

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.99        | 7.15     |
| 0.9899      | 7.23     |
| 0.9898      | 7.31     |
| 0.9897      | 7.39     |
| 0.9896      | 7.47     |
| 0.9895      | 7.55     |
| 0.9894      | 7.63     |
| 0.9893      | 7.71     |
| 0.9892      | 7.79     |
| 0.9891      | 7.87     |
| 0.989       | 7.95     |
| 0.9889      | 8.03     |
| 0.9888      | 8.11     |
| 0.9887      | 8.19     |
| 0.9886      | 8.27     |
| 0.9885      | 8.35     |
| 0.9884      | 8.44     |
| 0.9883      | 8.52     |
| 0.9882      | 8.6      |
| 0.9881      | 8.68     |
| 0.988       | 8.76     |
| 0.9879      | 8.84     |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9878      | 8.93     |
| 0.9877      | 9.01     |
| 0.9876      | 9.09     |
| 0.9875      | 9.17     |
| 0.9874      | 9.26     |
| 0.9873      | 9.34     |
| 0.9872      | 9.42     |
| 0.9871      | 9.51     |
| 0.987       | 9.59     |
| 0.9869      | 9.67     |
| 0.9868      | 9.75     |
| 0.9867      | 9.84     |
| 0.9866      | 9.92     |
| 0.9865      | 10       |
| 0.9864      | 10.09    |
| 0.9863      | 10.17    |
| 0.9862      | 10.25    |
| 0.9861      | 10.34    |
| 0.986       | 10.42    |
| 0.9859      | 10.5     |
| 0.9858      | 10.59    |
| 0.9857      | 10.67    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9856      | 10.75    |
| 0.9855      | 10.84    |
| 0.9854      | 10.92    |
| 0.9853      | 11       |
| 0.9852      | 11.09    |
| 0.9851      | 11.17    |
| 0.985       | 11.26    |
| 0.9849      | 11.34    |
| 0.9848      | 11.43    |
| 0.9847      | 11.51    |
| 0.9848      | 11.59    |
| 0.9845      | 11.68    |
| 0.9844      | 11.76    |
| 0.9843      | 11.85    |
| 0.9842      | 11.93    |
| 0.9841      | 12.02    |
| 0.984       | 12.1     |
| 0.9839      | 12.19    |
| 0.9838      | 12.28    |
| 0.9837      | 12.36    |
| 0.9836      | 12.45    |
| 0.9835      | 12.53    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9834      | 12.62    |
| 0.9833      | 12.71    |
| 0.9832      | 12.8     |
| 0.9831      | 12.88    |
| 0.983       | 12.97    |
| 0.9829      | 1306     |
| 0.9828      | 13.14    |
| 0.9827      | 13.23    |
| 0.9826      | 13.32    |
| 0.9825      | 13.41    |
| 0.9824      | 13.49    |
| 0.9823      | 13.58    |
| 0.9822      | 13.67    |
| 0.9821      | 13.76    |
| 0.982       | 13.85    |
| 0.9819      | 13.94    |
| 0.9818      | 14.02    |
| 0.9817      | 14.11    |
| 0.9816      | 14.2     |
| 0.9815      | 14.29    |
| 0.9814      | 14.38    |
| 0.9813      | 14.47    |
| 0.9812      | 14.56    |
| 0.9811      | 14.65    |
| 0.981       | 14.74    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9809      | 14.83    |
| 0.9808      | 14.92    |
| 0.9807      | 15.01    |
| 0.9806      | 15.1     |
| 0.9805      | 15.19    |
| 0.9804      | 15.28    |
| 0.9803      | 15.37    |
| 0.9802      | 15.46    |
| 0.9801      | 15.54    |
| 0.98        | 15.64    |
| 0.9799      | 15.73    |
| 0.9798      | 15.82    |
| 0.9797      | 15.91    |
| 0.9796      | 16       |
| 0.9795      | 16.09    |
| 0.9794      | 16.18    |
| 0.9793      | 16.27    |
| 0.9792      | 16.36    |
| 0.9791      | 16.45    |
| 0.979       | 16.54    |
| 0.9789      | 16.64    |
| 0.9788      | 16.73    |
| 0.9787      | 16.82    |
| 0.9786      | 16.91    |
| 0.9785      | 17       |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9784      | 17.1     |
| 0.9783      | 17.19    |
| 0.9782      | 17.28    |
| 0.9781      | 17.38    |
| 0.978       | 17.47    |
| 0.9779      | 17.56    |
| 0.9778      | 17.66    |
| 0.9777      | 17.75    |
| 0.9776      | 17.84    |
| 0.9775      | 17.94    |
| 0.9774      | 18.03    |
| 0.9773      | 18.12    |
| 0.9772      | 18.22    |
| 0.9771      | 18.31    |
| 0.977       | 18.41    |
| 0.9769      | 18.5     |
| 0.9768      | 18.6     |
| 0.9767      | 18.69    |
| 0.9766      | 18.79    |
| 0.9765      | 18.88    |
| 0.9764      | 18.98    |
| 0.9763      | 19.07    |
| 0.9762      | 19.17    |
| 0.9761      | 19.26    |
| 0.976       | 19.36    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9759      | 19.45    |
| 0.9758      | 19.55    |
| 0.9757      | 19.64    |
| 0.9756      | 19.74    |
| 0.9755      | 19.83    |
| 0.9754      | 19.93    |
| 0.9753      | 20.02    |
| 0.9752      | 20.12    |
| 0.9751      | 20.21    |
| 0.975       | 20.3     |
| 0.9749      | 20.4     |
| 0.9748      | 20.49    |
| 0.9747      | 20.59    |
| 0.9746      | 20.68    |
| 0.9745      | 20.77    |
| 0.9744      | 20.87    |
| 0.9743      | 20.96    |
| 0.9742      | 21.05    |
| 0.9741      | 21.15    |
| 0.974       | 21.24    |
| 0.9739      | 21.33    |
| 0.9738      | 21.42    |
| 0.9737      | 21.52    |
| 0.9736      | 21.61    |
| 0.9735      | 21.7     |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9734      | 21.79    |
| 0.9733      | 21.89    |
| 0.9732      | 21.98    |
| 0.9731      | 22.07    |
| 0.973       | 22.16    |
| 0.9729      | 22.25    |
| 0.9728      | 22.34    |
| 0.9727      | 22.43    |
| 0.9726      | 22.52    |
| 0.9725      | 22.62    |
| 0.9724      | 22.71    |
| 0.9723      | 22.8     |
| 0.9722      | 22.89    |
| 0.9721      | 22.98    |
| 0.972       | 23.07    |
| 0.9719      | 23.16    |
| 0.9718      | 23.25    |
| 0.9717      | 23.34    |
| 0.9716      | 23.43    |
| 0.9715      | 23.52    |
| 0.9714      | 23.61    |
| 0.9713      | 23.7     |
| 0.9712      | 23.79    |
| 0.9711      | 23.88    |
| 0.971       | 23.97    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9709      | 24.06    |
| 0.9708      | 24.15    |
| 0.9707      | 24.24    |
| 0.9706      | 24.33    |
| 0.9705      | 24.42    |
| 0.9704      | 24.51    |
| 0.9703      | 24.59    |
| 0.9702      | 24.68    |
| 0.9701      | 24.77    |
| 0.97        | 24.86    |
| 0.9699      | 24.95    |
| 0.9698      | 25.04    |
| 0.9697      | 25.12    |
| 0.9696      | 25.21    |
| 0.9695      | 25.3     |
| 0.9694      | 25.39    |
| 0.9693      | 25.48    |
| 0.9692      | 25.56    |
| 0.9691      | 25.65    |
| 0.969       | 25.74    |
| 0.9689      | 25.83    |
| 0.9688      | 25.91    |
| 0.9687      | 26       |
| 0.9686      | 26.09    |
| 0.9685      | 26.17    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9684      | 26.26    |
| 0.9683      | 26.35    |
| 0.9682      | 26.43    |
| 0.9681      | 26.52    |
| 0.968       | 26.61    |
| 0.9679      | 26.69    |
| 0.9678      | 26.78    |
| 0.9677      | 26.86    |
| 0.9676      | 26.95    |
| 0.9675      | 27.04    |
| 0.9674      | 27.12    |
| 0.9673      | 27.21    |
| 0.9672      | 27.29    |
| 0.9671      | 27.38    |
| 0.967       | 27.46    |
| 0.9669      | 27.55    |
| 0.9668      | 27.63    |
| 0.9667      | 27.72    |
| 0.9666      | 27.8     |
| 0.9665      | 27.89    |
| 0.9664      | 27.97    |
| 0.9663      | 28.05    |
| 0.9662      | 28.14    |
| 0.9661      | 28.22    |
| 0.966       | 28.31    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9659      | 28.39    |
| 0.9658      | 28.47    |
| 0.9657      | 28.56    |
| 0.9656      | 28.64    |
| 0.9655      | 28.73    |
| 0.9654      | 28.81    |
| 0.9653      | 28.89    |
| 0.9652      | 28.98    |
| 0.9651      | 29.06    |
| 0.965       | 29.14    |
| 0.9649      | 29.22    |
| 0.9648      | 29.31    |
| 0.9647      | 29.39    |
| 0.9646      | 29.47    |
| 0.9645      | 29.55    |
| 0.9644      | 29.64    |
| 0.9643      | 29.72    |
| 0.9642      | 29.8     |
| 0.9641      | 29.88    |
| 0.964       | 29.96    |
| 0.9639      | 30.04    |
| 0.9638      | 30.12    |
| 0.9637      | 30.20    |
| 0.9636      | 30.29    |
| 0.9635      | 30.37    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9634      | 30.45    |
| 0.9633      | 30.53    |
| 0.9632      | 30.61    |
| 0.9631      | 30.69    |
| 0.963       | 30.77    |
| 0.9629      | 30.85    |
| 0.9628      | 30.92    |
| 0.9627      | 31       |
| 0.9626      | 31.08    |
| 0.9625      | 31.16    |
| 0.9624      | 31.24    |
| 0.9623      | 31.32    |
| 0.9622      | 31.4     |
| 0.9621      | 31.47    |
| 0.962       | 31.55    |
| 0.9619      | 31.63    |
| 0.9618      | 31.71    |
| 0.9617      | 31.78    |
| 0.9616      | 31.86    |
| 0.9615      | 31.94    |
| 0.9614      | 32.01    |
| 0.9613      | 32.09    |
| 0.9612      | 32.17    |
| 0.9611      | 32.24    |
| 0.961       | 32.32    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9609      | 32.39    |
| 0.9608      | 32.47    |
| 0.9607      | 32.54    |
| 0.9606      | 32.62    |
| 0.9605      | 32.69    |
| 0.9604      | 32.77    |
| 0.9603      | 32.84    |
| 0.9602      | 32.92    |
| 0.9601      | 32.99    |
| 0.96        | 33.07    |
| 0.9599      | 33.14    |
| 0.9598      | 33.22    |
| 0.9597      | 33.29    |
| 0.9596      | 33.36    |
| 0.9595      | 33.44    |
| 0.9594      | 33.51    |
| 0.9593      | 33.59    |
| 0.9592      | 33.66    |
| 0.9591      | 33.73    |
| 0.959       | 33.8     |
| 0.9589      | 33.88    |
| 0.9588      | 33.95    |
| 0.9587      | 34.02    |
| 0.9586      | 34.09    |
| 0.9585      | 34.16    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9584      | 34.24    |
| 0.9583      | 34.31    |
| 0.9582      | 34.38    |
| 0.9581      | 34.45    |
| 0.958       | 34.52    |
| 0.9579      | 34.59    |
| 0.9578      | 34.66    |
| 0.9577      | 34.73    |
| 0.9576      | 34.8     |
| 0.9575      | 34.88    |
| 0.9574      | 34.95    |
| 0.9573      | 35.02    |
| 0.9572      | 35.09    |
| 0.9571      | 35.16    |
| 0.957       | 35.23    |
| 0.9569      | 35.3     |
| 0.9568      | 35.37    |
| 0.9567      | 35.43    |
| 0.9566      | 35.5     |
| 0.9565      | 35.57    |
| 0.9564      | 35.64    |
| 0.9563      | 35.71    |
| 0.9562      | 35.78    |
| 0.9561      | 35.85    |
| 0.956       | 35.92    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9559      | 35.99    |
| 0.9558      | 36.05    |
| 0.9557      | 36.12    |
| 0.9556      | 36.19    |
| 0.9555      | 36.26    |
| 0.9554      | 36.33    |
| 0.9553      | 36.39    |
| 0.9552      | 36.46    |
| 0.9551      | 36.53    |
| 0.955       | 36.6     |
| 0.9549      | 36.66    |
| 0.9548      | 36.73    |
| 0.9547      | 36.8     |
| 0.9546      | 36.87    |
| 0.9545      | 36.93    |
| 0.9544      | 37       |
| 0.9543      | 37.07    |
| 0.9542      | 37.13    |
| 0.9541      | 37.2     |
| 0.954       | 37.27    |
| 0.9539      | 37.33    |
| 0.9538      | 37.4     |
| 0.9537      | 37.46    |
| 0.9536      | 37.53    |
| 0.9535      | 37.6     |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9534      | 37.66    |
| 0.9533      | 37.73    |
| 0.9532      | 37.79    |
| 0.9531      | 37.86    |
| 0.953       | 37.92    |
| 0.9529      | 37.99    |
| 0.9528      | 38.05    |
| 0.9527      | 38.12    |
| 0.9526      | 38.18    |
| 0.9525      | 38.25    |
| 0.9524      | 38.31    |
| 0.9523      | 38.38    |
| 0.9522      | 38.44    |
| 0.9521      | 38.51    |
| 0.952       | 38.57    |
| 0.9519      | 38.63    |
| 0.9518      | 38.7     |
| 0.9517      | 38.76    |
| 0.9516      | 38.83    |
| 0.9515      | 38.89    |
| 0.9514      | 38.95    |
| 0.9513      | 39.02    |
| 0.9512      | 39.08    |
| 0.9511      | 39.14    |
| 0.951       | 39.21    |
|             |          |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9509      | 39.27    |
| 0.9508      | 39.33    |
| 0.9507      | 39.4     |
| 0.9506      | 39.46    |
| 0.9505      | 39.52    |
| 0.9504      | 39.58    |
| 0.9503      | 39.65    |
| 0.9502      | 39.71    |
| 0.9501      | 39.77    |
| 0.95        | 39.83    |
| 0.9499      | 39.9     |
| 0.9498      | 39.96    |
| 0.9497      | 40.02    |
| 0.9496      | 40.08    |
| 0.9495      | 40.15    |
| 0.9494      | 40.21    |
| 0.9493      | 40.27    |
| 0.9492      | 40.33    |
| 0.9491      | 40.39    |
| 0.949       | 40.46    |
| 0.9489      | 40.52    |
| 0.9488      | 40.58    |
| 0.9487      | 40.64    |
| 0.9486      | 40.70    |
| 0.9485      | 40.76    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9484      | 40.82    |
| 0.9483      | 40.88    |
| 0.9482      | 40.95    |
| 0.9481      | 41.01    |
| 0.948       | 41.07    |
| 0.9479      | 41.13    |
| 0.9478      | 41.19    |
| 0.9477      | 41.25    |
| 0.9476      | 41.31    |
| 0.9475      | 41.37    |
| 0.9474      | 41.43    |
| 0.9473      | 41.49    |
| 0.9472      | 41.55    |
| 0.9471      | 41.61    |
| 0.947       | 41.67    |
| 0.9469      | 41.73    |
| 0.9468      | 41.79    |
| 0.9467      | 41.85    |
| 0.9466      | 41.91    |
| 0.9465      | 41.97    |
| 0.9464      | 42.03    |
| 0.9463      | 42.09    |
| 0.9462      | 42.15    |
| 0.9461      | 42.21    |
| 0.946       | 42.27    |

| % by Vol |
|----------|
| 42.32    |
| 42.38    |
| 42.44    |
| 42.5     |
| 42.56    |
| 42.62    |
| 42.68    |
| 42.74    |
| 42.8     |
| 42.85    |
| 42.91    |
| 42.97    |
| 43.03    |
| 43.09    |
| 43.15    |
| 43.2     |
| 43.26    |
| 43.32    |
| 43.38    |
| 43.43    |
| 43.49    |
| 43.55    |
| 43.61    |
| 43.66    |
| 43.72    |
|          |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9434      | 43.78    |
| 0.9433      | 43.84    |
| 0.9432      | 43.89    |
| 0.9431      | 43.95    |
| 0.943       | 44.01    |
| 0.9429      | 44.06    |
| 0.9428      | 44.12    |
| 0.9427      | 44.18    |
| 0.9426      | 44.23    |
| 0.9425      | 44.29    |
| 0.9424      | 44.35    |
| 0.9423      | 44.4     |
| 0.9422      | 44.46    |
| 0.9421      | 44.52    |
| 0.942       | 44.57    |
| 0.9419      | 44.63    |
| 0.9418      | 44.69    |
| 0.9417      | 44.74    |
| 0.9416      | 44.8     |
| 0.9415      | 44.86    |
| 0.9414      | 44.91    |
| 0.9413      | 44.97    |
| 0.9412      | 45.02    |
| 0.9411      | 45.08    |
| 0.941       | 45.13    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9409      | 45.19    |
| 0.9408      | 45.24    |
| 0.9407      | 45.3     |
| 0.9406      | 45.36    |
| 0.9405      | 45.41    |
| 0.9404      | 45.47    |
| 0.9403      | 45.52    |
| 0.9402      | 45.58    |
| 0.9401      | 45.63    |
| 0.94        | 45.69    |
| 0.9399      | 45.74    |
| 0.9398      | 45.8     |
| 0.9397      | 45.85    |
| 0.9396      | 45.9     |
| 0.9395      | 45.96    |
| 0.9394      | 46.01    |
| 0.9393      | 46.07    |
| 0.9392      | 46.12    |
| 0.9391      | 46.18    |
| 0.939       | 46.23    |
| 0.9389      | 46.28    |
| 0.9388      | 46.34    |
| 0.9387      | 46.39    |
| 0.9386      | 46.45    |
| 0.9385      | 46.5     |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9384      | 46.55    |
| 0.9383      | 46.61    |
| 0.9382      | 46.66    |
| 0.9381      | 46.72    |
| 0.938       | 46.77    |
| 0.9379      | 46.82    |
| 0.9378      | 46.88    |
| 0.9377      | 46.93    |
| 0.9376      | 46.98    |
| 0.9375      | 47.04    |
| 0.9374      | 47.09    |
| 0.9373      | 47.14    |
| 0.9372      | 47.2     |
| 0.9371      | 47.25    |
| 0.937       | 47.3     |
| 0.9369      | 47.36    |
| 0.9368      | 47.41    |
| 0.9367      | 47.46    |
| 0.9366      | 47.52    |
| 0.9365      | 47.57    |
| 0.9364      | 47.62    |
| 0.9363      | 47.68    |
| 0.9362      | 47.73    |
| 0.9361      | 47.78    |
| 0.936       | 47.84    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
|             | -        |
| 0.9359      | 47.89    |
| 0.9358      | 47.94    |
| 0.9357      | 47.99    |
| 0.9356      | 48.05    |
| 0.9355      | 48.1     |
| 0.9354      | 48.15    |
| 0.9353      | 48.2     |
| 0.9352      | 48.26    |
| 0.9351      | 48.31    |
| 0.935       | 48.36    |
| 0.9349      | 48.41    |
| 0.9348      | 48.47    |
| 0.9347      | 48.52    |
| 0.9346      | 48.57    |
| 0.9345      | 48.62    |
| 0.9344      | 48.67    |
| 0.9343      | 48.73    |
| 0.9342      | 48.78    |
| 0.9341      | 48.83    |
| 0.934       | 48.88    |
| 0.9339      | 48.93    |
| 0.9338      | 48.99    |
| 0.9337      | 49.04    |
| 0.9336      | 49.09    |
| 0.9335      | 49.14    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9334      | 49.19    |
| 0.9333      | 49.24    |
| 0.9332      | 49.3     |
| 0.9331      | 49.35    |
| 0.933       | 49.4     |
| 0.9329      | 49.45    |
| 0.9328      | 49.5     |
| 0.9327      | 49.55    |
| 0.9326      | 49.6     |
| 0.9325      | 49.65    |
| 0.9324      | 49.71    |
| 0.9323      | 49.76    |
| 0.9322      | 49.81    |
| 0.9321      | 49.86    |
| 0.932       | 49.91    |
| 0.9319      | 49.96    |
| 0.9318      | 50.01    |
| 0.9317      | 50.06    |
| 0.9316      | 50.11    |
| 0.9315      | 50.16    |
| 0.9314      | 50.21    |
| 0.9313      | 50.26    |
| 0.9312      | 50.31    |
| 0.9311      | 50.36    |
| 0.931       | 50.41    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9309      | 50.46    |
| 0.9308      | 50.51    |
| 0.9307      | 50.56    |
| 0.9306      | 50.62    |
| 0.9305      | 50.67    |
| 0.9304      | 50.72    |
| 0.9303      | 50.77    |
| 0.9302      | 50.82    |
| 0.9301      | 50.87    |
| 0.93        | 50.92    |
| 0.9299      | 50.97    |
| 0.9298      | 51.02    |
| 0.9297      | 51.07    |
| 0.9296      | 51.12    |
| 0.9295      | 51.16    |
| 0.9294      | 51.21    |
| 0.9293      | 51.26    |
| 0.9292      | 51.31    |
| 0.9291      | 51.36    |
| 0.929       | 51.41    |
| 0.9289      | 51.46    |
| 0.9288      | 51.51    |
| 0.9287      | 51.56    |
| 0.9286      | 51.61    |
| 0.9285      | 51.66    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9284      | 51.71    |
| 0.9283      | 51.76    |
| 0.9282      | 51.81    |
| 0.9281      | 51.86    |
| 0.928       | 51.91    |
| 0.9279      | 51.96    |
| 0.9278      | 52.01    |
| 0.9277      | 52.06    |
| 0.9276      | 52.11    |
| 0.9275      | 52.16    |
| 0.9274      | 52.21    |
| 0.9273      | 52.26    |
| 0.9272      | 52.31    |
| 0.9271      | 52.35    |
| 0.927       | 52.4     |
| 0.9269      | 52.45    |
| 0.9268      | 52.5     |
| 0.9267      | 52.55    |
| 0.9266      | 52.6     |
| 0.9265      | 52.65    |
| 0.9264      | 52.7     |
| 0.9263      | 52.75    |
| 0.9262      | 52.8     |
| 0.9261      | 52.84    |
| 0.926       | 52.89    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9259      | 52.94    |
| 0.9258      | 52.99    |
| 0.9257      | 53.04    |
| 0.9256      | 53.09    |
| 0.9255      | 53.14    |
| 0.9254      | 53.19    |
| 0.9253      | 53.23    |
| 0.9252      | 53.28    |
| 0.9251      | 53.33    |
| 0.925       | 53.38    |
| 0.9249      | 53.43    |
| 0.9248      | 53.48    |
| 0.9247      | 53.52    |
| 0.9246      | 53.57    |
| 0.9245      | 53.62    |
| 0.9244      | 53.67    |
| 0.9243      | 53.72    |
| 0.9242      | 53.77    |
| 0.9241      | 53.82    |
| 0.924       | 53.86    |
| 0.9239      | 53.91    |
| 0.9238      | 53.96    |
| 0.9237      | 54.01    |
| 0.9236      | 54.06    |
| 0.9235      | 54.1     |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9234      | 54.15    |
| 0.9233      | 54.2     |
| 0.9232      | 54.25    |
| 0.9231      | 54.3     |
| 0.923       | 54.35    |
| 0.9229      | 54.39    |
| 0.9228      | 54.44    |
| 0.9227      | 54.49    |
| 0.9226      | 54.54    |
| 0.9225      | 54.59    |
| 0.9224      | 54.63    |
| 0.9223      | 54.68    |
| 0.9222      | 54.73    |
| 0.9221      | 54.78    |
| 0.922       | 54.82    |
| 0.9219      | 54.87    |
| 0.9218      | 54.92    |
| 0.9217      | 54.97    |
| 0.9216      | 55.01    |
| 0.9215      | 55.06    |
| 0.9214      | 55.11    |
| 0.9213      | 55.16    |
| 0.9212      | 55.2     |
| 0.9211      | 55.25    |
| 0.921       | 55.3     |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9209      | 55.35    |
| 0.9208      | 55.39    |
| 0.9207      | 55.44    |
| 0.9206      | 55.49    |
| 0.9205      | 55.54    |
| 0.9204      | 55.58    |
| 0.9203      | 55.63    |
| 0.9202      | 55.68    |
| 0.9201      | 55.72    |
| 0.92        | 55.77    |
| 0.9199      | 55.82    |
| 0.9198      | 55.87    |
| 0.9197      | 55.91    |
| 0.9196      | 55.96    |
| 0.9195      | 56.01    |
| 0.9194      | 56.05    |
| 0.9193      | 56.1     |
| 0.9192      | 56.15    |
| 0.9191      | 56.19    |
| 0.919       | 56.24    |
| 0.9189      | 56.29    |
| 0.9188      | 56.33    |
| 0.9187      | 56.38    |
| 0.9186      | 56.43    |
| 0.9185      | 56.47    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9184      | 56.52    |
| 0.9183      | 56.57    |
| 0.9182      | 56.61    |
| 0.9181      | 56.66    |
| 0.918       | 56.71    |
| 0.9179      | 56.75    |
| 0.9178      | 56.8     |
| 0.9177      | 56.85    |
| 0.9176      | 56.9     |
| 0.9175      | 56.94    |
| 0.9174      | 56.99    |
| 0.9173      | 57.04    |
| 0.9172      | 57.08    |
| 0.9171      | 57.13    |
| 0.917       | 57.17    |
| 0.9169      | 57.22    |
| 0.9168      | 57.27    |
| 0.9167      | 57.31    |
| 0.9166      | 57.36    |
| 0.9165      | 57.41    |
| 0.9164      | 57.46    |
| 0.9163      | 57.5     |
| 0.9162      | 57.55    |
| 0.9161      | 57.59    |
| 0.916       | 57.64    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9159      | 57.69    |
| 0.9158      | 57.73    |
| 0.9157      | 57.78    |
| 0.9156      | 57.82    |
| 0.9155      | 57.87    |
| 0.9154      | 57.91    |
| 0.9153      | 57.96    |
| 0.9152      | 58       |
| 0.9151      | 58.05    |
| 0.915       | 58.1     |
| 0.9149      | 58.14    |
| 0.9148      | 58.19    |
| 0.9147      | 5823     |
| 0.9146      | 58.28    |
| 0.9145      | 58.32    |
| 0.9144      | 58.37    |
| 0.9143      | 58.41    |
| 0.9142      | 58.46    |
| 0.9141      | 58.5     |
| 0.914       | 58.55    |
| 0.9139      | 58.59    |
| 0.9138      | 58.64    |
| 0.9137      | 58.68    |
| 0.9136      | 58.73    |
| 0.9135      | 58.77    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9134      | 58.82    |
| 0.9133      | 58.86    |
| 0.9132      | 58.91    |
| 0.9131      | 58.95    |
| 0.913       | 59       |
| 0.9129      | 59.04    |
| 0.9128      | 59.09    |
| 0.9127      | 59.13    |
| 0.9126      | 59.18    |
| 0.9125      | 59.22    |
| 0.9124      | 59.27    |
| 0.9123      | 59.31    |
| 0.9122      | 59.36    |
| 0.9121      | 59.4     |
| 0.912       | 59.45    |
| 0.9119      | 59.49    |
| 0.9118      | 59.54    |
| 0.9117      | 59.58    |
| 0.9116      | 59.63    |
| 0.9115      | 59.67    |
| 0.9114      | 59.72    |
| 0.9113      | 59.76    |
| 0.9112      | 59.8     |
| 0.9111      | 59.85    |
| 0.911       | 59.89    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9109      | 59.94    |
| 0.9108      | 59.98    |
| 0.9107      | 60.03    |
| 0.9106      | 60.07    |
| 0.9105      | 60.12    |
| 0.9104      | 60.16    |
| 0.9103      | 60.21    |
| 0.9102      | 60.25    |
| 0.9101      | 60.3     |
| 0.91        | 60.34    |
| 0.9099      | 60.38    |
| 0.9098      | 60.43    |
| 0.9097      | 60.47    |
| 0.9096      | 60.52    |
| 0.9095      | 60.56    |
| 0.9094      | 60.61    |
| 0.9093      | 60.65    |
| 0.9092      | 60.69    |
| 0.9091      | 60.74    |
| 0.909       | 60.78    |
| 0.9089      | 60.83    |
| 0.9088      | 60.87    |
| 0.9087      | 60.92    |
| 0.9086      | 60.96    |
| 0.9085      | 61       |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9084      | 61.05    |
| 0.9083      | 61.09    |
| 0.9082      | 61.14    |
| 0.9081      | 61.18    |
| 0.908       | 61.22    |
| 0.9079      | 61.27    |
| 0.9078      | 61.31    |
| 0.9077      | 61.36    |
| 0.9076      | 61.4     |
| 0.9075      | 61.44    |
| 0.9074      | 61.49    |
| 0.9073      | 61.53    |
| 0.9072      | 61.58    |
| 0.9071      | 61.62    |
| 0.907       | 61.66    |
| 0.9069      | 61.71    |
| 0.9068      | 61.75    |
| 0.9067      | 61.79    |
| 0.9066      | 61.84    |
| 0.9065      | 61.88    |
| 0.9064      | 61.93    |
| 0.9063      | 61.97    |
| 0.9062      | 62.01    |
| 0.9061      | 62.06    |
| 0.906       | 62.1     |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9059      | 62.14    |
| 0.9058      | 62.19    |
| 0.9057      | 62.23    |
| 0.9056      | 62.27    |
| 0.9055      | 62.32    |
| 0.9054      | 62.36    |
| 0.9053      | 62.4     |
| 0.9052      | 62.45    |
| 0.9051      | 62.49    |
| 0.905       | 62.53    |
| 0.9049      | 62.58    |
| 0.9048      | 62.62    |
| 0.9047      | 62.66    |
| 0.9046      | 62.71    |
| 0.9045      | 62.75    |
| 0.9044      | 62.8     |
| 0.9043      | 62.84    |
| 0.9042      | 62.88    |
| 0.9041      | 62.93    |
| 0.904       | 62.97    |
| 0.9039      | 63.01    |
| 0.9038      | 63.06    |
| 0.9037      | 63.10    |
| 0.9036      | 63.14    |
| 0.9035      | 63.19    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9034      | 63.23    |
| 0.9033      | 63.27    |
| 0.9032      | 63.31    |
| 0.9031      | 63.36    |
| 0.903       | 63.4     |
| 0.9029      | 63.44    |
| 0.9028      | 63.49    |
| 0.9027      | 63.53    |
| 0.9026      | 63.57    |
| 0.9025      | 63.62    |
| 0.9024      | 63.66    |
| 0.9023      | 63.7     |
| 0.9022      | 63.75    |
| 0.9021      | 63.79    |
| 0.902       | 63.83    |
| 0.9019      | 63.88    |
| 0.9018      | 63.92    |
| 0.9017      | 63.96    |
| 0.9016      | 64       |
| 0.9015      | 64.05    |
| 0.9014      | 64.09    |
| 0.9013      | 64.13    |
| 0.9012      | 64.18    |
| 0.9011      | 64.22    |
| 0.901       | 64.26    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.9009      | 64.3     |
| 0.9008      | 64.35    |
| 0.9007      | 64.39    |
| 0.9006      | 64.43    |
| 0.9005      | 64.47    |
| 0.9004      | 64.52    |
| 0.9003      | 64.56    |
| 0.9002      | 64.6     |
| 0.9001      | 64.65    |
| 0.9         | 64.69    |
| 0.8999      | 64.73    |
| 0.8998      | 64.77    |
| 0.8997      | 64.82    |
| 0.8996      | 64.86    |
| 0.8995      | 64.9     |
| 0.8994      | 64.94    |
| 0.8993      | 64.99    |
| 0.8992      | 65.03    |
| 0.8991      | 65.07    |
| 0.899       | 65.11    |
| 0.8989      | 65.16    |
| 0.8988      | 65.2     |
| 0.8987      | 65.24    |
| 0.8986      | 65.28    |
| 0.8985      | 65.32    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.8984      | 65.37    |
| 0.8983      | 65.41    |
| 0.8982      | 65.45    |
| 0.8981      | 65.49    |
| 0.898       | 65.54    |
| 0.8979      | 65.58    |
| 0.8978      | 65.62    |
| 0.8977      | 65.66    |
| 0.8976      | 65.7     |
| 0.8975      | 65.75    |
| 0.8974      | 65.79    |
| 0.8973      | 65.83    |
| 0.8972      | 65.87    |
| 0.8971      | 65.91    |
| 0.897       | 65.96    |
| 0.8969      | 66       |
| 0.8968      | 66.04    |
| 0.8967      | 66.08    |
| 0.8966      | 66.12    |
| 0.8965      | 66.17    |
| 0.8964      | 66.21    |
| 0.8963      | 66.25    |
| 0.8962      | 66.29    |
| 0.8961      | 66.33    |
| 0.896       | 66.37    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.8959      | 66.42    |
| 0.8958      | 66.46    |
| 0.8957      | 66.5     |
| 0.8956      | 66.54    |
| 0.8955      | 66.58    |
| 0.8954      | 66.62    |
| 0.8953      | 66.67    |
| 0.8952      | 66.71    |
| 0.8951      | 66.75    |
| 0.8950      | 66.79    |
| 0.8949      | 66.83    |
| 0.8948      | 66.87    |
| 0.8947      | 66.92    |
| 0.8946      | 66.96    |
| 0.8945      | 67       |
| 0.8944      | 67.04    |
| 0.8943      | 67.08    |
| 0.8942      | 67.12    |
| 0.8941      | 67.16    |
| 0.894       | 67.21    |
| 0.8939      | 67.25    |
| 0.8938      | 67.29    |
| 0.8937      | 67.33    |
| 0.8936      | 67.37    |
| 0.8935      | 67.41    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.8934      | 67.45    |
| 0.8933      | 67.49    |
| 0.8932      | 67.54    |
| 0.8931      | 67.58    |
| 0.893       | 67.62    |
| 0.8929      | 67.66    |
| 0.8928      | 67.7     |
| 0.8927      | 67.74    |
| 0.8926      | 67.78    |
| 0.8925      | 67.82    |
| 0.8924      | 67.87    |
| 0.8923      | 67.91    |
| 0.8922      | 67.95    |
| 0.8921      | 67.99    |
| 0.892       | 68.43    |
| 0.8919      | 68.07    |
| 0.8918      | 68.11    |
| 0.8917      | 68.15    |
| 0.8916      | 68.19    |
| 0.8915      | 68.24    |
| 0.8914      | 68.28    |
| 0.8913      | 68.32    |
| 0.8912      | 68.36    |
| 0.8911      | 68.4     |
| 0.891       | 68.44    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.8909      | 68.48    |
| 0.8908      | 68.52    |
| 0.8907      | 68.56    |
| 0.8906      | 68.6     |
| 0.8905      | 68.65    |
| 0.8904      | 68.69    |
| 0.8903      | 68.73    |
| 0.8902      | 68.77    |
| 0.8901      | 68.81    |
| 0.89        | 68.85    |
| 0.8899      | 68.89    |
| 0.8898      | 68.93    |
| 0.8897      | 68.97    |
| 0.8896      | 69.01    |
| 0.8895      | 69.05    |
| 0.8894      | 69.09    |
| 0.8893      | 69.13    |
| 0.8892      | 69.17    |
| 0.8891      | 69.22    |
| 0.889       | 69.26    |
| 0.8889      | 69.34    |
| 0.8887      | 69.38    |
| 0.8886      | 69.42    |
| 0.8885      | 69.46    |
| 0.8884      | 69.5     |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.8883      | 69.54    |
| 0.8882      | 69.58    |
| 0.8881      | 69.62    |
| 0.888       | 69.66    |
| 0.8879      | 69.7     |
| 0.8878      | 69.74    |
| 0.8877      | 69.78    |
| 0.8876      | 69.82    |
| 0.8875      | 69.86    |
| 0.8874      | 69.9     |
| 0.8873      | 69.94    |
| 0.8872      | 69.98    |
| 0.8871      | 70.02    |
| 0.887       | 70.06    |
| 0.8869      | 70.1     |
| 0.8868      | 70.14    |
| 0.8867      | 70.18    |
| 0.8866      | 70.22    |
| 0.8865      | 70.26    |
| 0.8864      | 70.3     |
| 0.8863      | 70.34    |
| 0.8862      | 70.38    |
| 0.8861      | 70.42    |
| 0.886       | 70.46    |
| 0.8859      | 70.5     |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.8858      | 70.54    |
| 0.8857      | 70.58    |
| 0.8856      | 70.62    |
| 0.8855      | 70.66    |
| 0.8854      | 70.7     |
| 0.8853      | 70.74    |
| 0.8852      | 70.78    |
| 0.8851      | 70.82    |
| 0.885       | 70.86    |
| 0.8849      | 70.9     |
| 0.8848      | 70.94    |
| 0.8847      | 70.98    |
| 0.8846      | 71.02    |
| 0.8845      | 71.06    |
| 0.8844      | 71.1     |
| 0.8843      | 71.14    |
| 0.8842      | 71.18    |
| 0.8841      | 71.22    |
| 0.884       | 71.26    |
| 0.8838      | 71.34    |
| 0.8837      | 71.38    |
| 0.8836      | 71.42    |
| 0.8835      | 71.46    |
| 0.8834      | 71.5     |
| 0.8833      | 71.54    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.8832      | 71.58    |
| 0.8831      | 71.61    |
| 0.883       | 71.65    |
| 0.8829      | 71.69    |
| 0.8828      | 71.73    |
| 0.8827      | 71.77    |
| 0.8826      | 71.81    |
| 0.8825      | 71.85    |
| 0.8824      | 71.89    |
| 0.8823      | 71.93    |
| 0.8822      | 71.97    |
| 0.8821      | 72.01    |
| 0.882       | 72.05    |
| 0.8819      | 72.09    |
| 0.8818      | 72.12    |
| 0.8817      | 72.16    |
| 0.8816      | 72.2     |
| 0.8815      | 72.24    |
| 0.8814      | 72.28    |
| 0.8813      | 72.32    |
| 0.8812      | 72.36    |
| 0.8811      | 72.4     |
| 0.881       | 72.44    |
| 0.8809      | 72.48    |
| 0.8808      | 72.52    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.8807      | 72.56    |
| 0.8806      | 72.59    |
| 0.8805      | 72.63    |
| 0.8804      | 72.67    |
| 0.8803      | 72.71    |
| 0.8802      | 72.75    |
| 0.8801      | 72.79    |
| 0.88        | 72.83    |
| 0.8799      | 72.87    |
| 0.8798      | 72.91    |
| 0.8797      | 72.95    |
| 0.8796      | 72.99    |
| 0.8795      | 73.02    |
| 0.8794      | 73.06    |
| 0.8793      | 73.1     |
| 0.8792      | 73.14    |
| 0.8791      | 73.18    |
| 0.879       | 73.22    |
| 0.8789      | 73.26    |
| 0.8788      | 73.3     |
| 0.8787      | 73.33    |
| 0.8786      | 73.37    |
| 0.8785      | 73.41    |
| 0.8784      | 73.45    |
| 0.8783      | 73.49    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.8782      | 73.53    |
| 0.8781      | 73.57    |
| 0.878       | 73.61    |
| 0.8779      | 73.64    |
| 0.8778      | 73.68    |
| 0.8777      | 73.72    |
| 0.8776      | 73.76    |
| 0.8775      | 73.8     |
| 0.8774      | 73.84    |
| 0.8773      | 73.87    |
| 0.8772      | 73.91    |
| 0.8771      | 73.95    |
| 0.877       | 73.99    |
| 0.8769      | 74.03    |
| 0.8768      | 74.07    |
| 0.8767      | 74.11    |
| 0.8766      | 74.14    |
| 0.8765      | 74.18    |
| 0.8764      | 74.22    |
| 0.8763      | 74.26    |
| 0.8762      | 74.3     |
| 0.8761      | 74.34    |
| 0.876       | 74.37    |
| 0.8759      | 74.41    |
| 0.8758      | 74.45    |

|             | 1        |
|-------------|----------|
| Sp.gr @20°C | % by Vol |
| 0.8757      | 74.49    |
| 0.8756      | 74.53    |
| 0.8755      | 74.57    |
| 0.8754      | 74.6     |
| 0.8753      | 74.64    |
| 0.8752      | 74.68    |
| 0.8751      | 74.72    |
| 0.875       | 74.76    |
| 0.8749      | 74.8     |
| 0.8748      | 74.83    |
| 0.8747      | 74.87    |
| 0.8746      | 74.91    |
| 0.8745      | 74.95    |
| 0.8744      | 74.99    |
| 0.8743      | 75.03    |
| 0.8742      | 75.06    |
| 0.8741      | 75.1     |
| 0.874       | 75.14    |
| 0.8739      | 75.18    |
| 0.8738      | 75.22    |
| 0.8737      | 75.25    |
| 0.8736      | 75.29    |
| 0.8735      | 75.33    |
| 0.8734      | 75.37    |
| 0.8733      | 75.41    |

| % by Vol |
|----------|
| 75.44    |
| 75.48    |
| 75.52    |
| 75.56    |
| 75.6     |
| 75.63    |
| 75.67    |
| 75.71    |
| 75.75    |
| 75.78    |
| 75.82    |
| 75.86    |
| 75.9     |
| 75.93    |
| 75.97    |
| 76.01    |
| 76.05    |
| 76.09    |
| 76.12    |
| 76.16    |
| 76.2     |
| 76.24    |
| 76.27    |
| 76.31    |
| 76.35    |
|          |

| Sp.gr @20°C | % by Vol |  |  |  |  |
|-------------|----------|--|--|--|--|
| 0.8707      | 76.39    |  |  |  |  |
| 0.8706      | 76.42    |  |  |  |  |
| 0.8705      | 76.46    |  |  |  |  |
| 0.8704      | 76.5     |  |  |  |  |
| 0.8703      | 76.54    |  |  |  |  |
| 0.8702      | 76.57    |  |  |  |  |
| 0.8701      | 76.61    |  |  |  |  |
| 0.87        | 76.65    |  |  |  |  |
| 0.8699      | 76.68    |  |  |  |  |
| 0.8698      | 76.72    |  |  |  |  |
| 0.8697      | 76.76    |  |  |  |  |
| 0.8696      | 76.8     |  |  |  |  |
| 0.8695      | 76.83    |  |  |  |  |
| 0.8694      | 76.87    |  |  |  |  |
| 0.8693      | 76.91    |  |  |  |  |
| 0.8692      | 76.94    |  |  |  |  |
| 0.8691      | 76.98    |  |  |  |  |
| 0.869       | 77.02    |  |  |  |  |
| 0.8689      | 77.06    |  |  |  |  |
| 0.8688      | 77.09    |  |  |  |  |
| 0.8687      | 77.13    |  |  |  |  |
| 0.8686      | 77.17    |  |  |  |  |
| 0.8685      | 77.2     |  |  |  |  |
| 0.8684      | 77.24    |  |  |  |  |
| 0.8683      | 77.28    |  |  |  |  |

| Sp.gr @20°C | % by Vol |  |  |  |  |
|-------------|----------|--|--|--|--|
| 0.8682      | 77.32    |  |  |  |  |
| 0.8681      | 77.35    |  |  |  |  |
| 0.868       | 77.39    |  |  |  |  |
| 0.8679      | 77.43    |  |  |  |  |
| 0.8678      | 77.46    |  |  |  |  |
| 0.8677      | 77.5     |  |  |  |  |
| 0.8676      | 77.54    |  |  |  |  |
| 0.8675      | 77.57    |  |  |  |  |
| 0.8674      | 77.61    |  |  |  |  |
| 0.8673      | 77.65    |  |  |  |  |
| 0.8672      | 77.68    |  |  |  |  |
| 0.8671      | 77.72    |  |  |  |  |
| 0.867       | 77.76    |  |  |  |  |
| 0.8669      | 77.79    |  |  |  |  |
| 0.8668      | 77.83    |  |  |  |  |
| 0.8667      | 77.87    |  |  |  |  |
| 0.8666      | 77.9     |  |  |  |  |
| 0.8665      | 77.94    |  |  |  |  |
| 0.8664      | 77.98    |  |  |  |  |
| 0.8663      | 78.01    |  |  |  |  |
| 0.8662      | 78.45    |  |  |  |  |
| 0.8661      | 78.09    |  |  |  |  |
| 0.8643      | 78.12    |  |  |  |  |
| 0.8659      | 78.16    |  |  |  |  |
| 0.8658      | 78.2     |  |  |  |  |

| Sp.gr @20°C  | % by Vol |  |  |  |  |
|--------------|----------|--|--|--|--|
| 0.8657       | 78.23    |  |  |  |  |
| 0.8656       | 78.27    |  |  |  |  |
| 0.8655       | 78.31    |  |  |  |  |
| 0.8654       | 78.34    |  |  |  |  |
| 0.8653       | 78.38    |  |  |  |  |
| 0.8652       | 78.42    |  |  |  |  |
| 0.8651       | 78.45    |  |  |  |  |
| 0.865        | 78.49    |  |  |  |  |
| 0.8649       | 78.52    |  |  |  |  |
| 0.8648       | 78.56    |  |  |  |  |
| 0.8647       | 78.6     |  |  |  |  |
| 0.8646 78.63 |          |  |  |  |  |
| 0.8645       | 78.67    |  |  |  |  |
| 0.8644       | 78.71    |  |  |  |  |
| 0.8643       | 78.74    |  |  |  |  |
| 0.8642       | 78.78    |  |  |  |  |
| 0.8641       | 78.82    |  |  |  |  |
| 0.864        | 78.85    |  |  |  |  |
| 0.8639 78.89 |          |  |  |  |  |
| 0.8638       | 78.93    |  |  |  |  |
| 0.8637       | 78.96    |  |  |  |  |
| 0.8636       | 79       |  |  |  |  |
| 0.8635       | 79.03    |  |  |  |  |
| 0.8634       | 79.07    |  |  |  |  |
| 0.8633       | 79.11    |  |  |  |  |
| 0.8632       | 79.14    |  |  |  |  |
| 0.8631       | 79.18    |  |  |  |  |
| 0.863        | 79.22    |  |  |  |  |
| 0.8629       | 79.25    |  |  |  |  |
| 0.8628       | 79.29    |  |  |  |  |
| 0.8627       | 79.32    |  |  |  |  |
| 0.8626 79.36 |          |  |  |  |  |
| 0.8625 79.36 |          |  |  |  |  |
| 0.8624       | 79.43    |  |  |  |  |
| 0.8623       | 79.47    |  |  |  |  |

| Sp.gr @20°C | % by Vol |  |  |  |  |
|-------------|----------|--|--|--|--|
| 0.8622      | 79.5     |  |  |  |  |
| 0.8621      | 79.54    |  |  |  |  |
| 0.862       | 79.58    |  |  |  |  |
| 0.8619      | 79.61    |  |  |  |  |
| 0.8618      | 79.65    |  |  |  |  |
| 0.8617      | 79.68    |  |  |  |  |
| 0.8616      | 79.72    |  |  |  |  |
| 0.8615      | 79.76    |  |  |  |  |
| 0.8614      | 79.79    |  |  |  |  |
| 0.8613      | 79.83    |  |  |  |  |
| 0.8612      | 79.86    |  |  |  |  |
| 0.8611      | 79.9     |  |  |  |  |
| 0.861       | 79.94    |  |  |  |  |
| 0.8609      | 79.97    |  |  |  |  |
| 0.8608      | 80.01    |  |  |  |  |
| 0.8607      | 80.04    |  |  |  |  |
| 0.8606      | 80.08    |  |  |  |  |
| 0.8605      | 80.12    |  |  |  |  |
| 0.8604      | 80.15    |  |  |  |  |
| 0.8603      | 80.19    |  |  |  |  |
| 0.8602      | 80.22    |  |  |  |  |
| 0.8601      | 80.26    |  |  |  |  |
| 0.86 80.29  |          |  |  |  |  |
| 0.8599      | 80.33    |  |  |  |  |
| 0.8598      | 80.36    |  |  |  |  |
| 0.8597      | 80.4     |  |  |  |  |
| 0.8596      | 80.44    |  |  |  |  |
| 0.8595      | 80.47    |  |  |  |  |
| 0.8594      | 80.51    |  |  |  |  |
| 0.8593      | 80.54    |  |  |  |  |
| 0.8592      | 80.58    |  |  |  |  |
| 0.8591      | 80.61    |  |  |  |  |
| 0.859       | 80.65    |  |  |  |  |
| 0.8589      | 80.68    |  |  |  |  |
| 0.8588      | 80.72    |  |  |  |  |
| 0.8587      | 80.76    |  |  |  |  |
| 0.8586      | 80.79    |  |  |  |  |
| 0.8585      | 80.83    |  |  |  |  |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.8584      | 80.86    |
| 0.8583      | 80.9     |
| 0.8582      | 80.93    |
| 0.8581      | 80.97    |
| 0.858       | 81       |
| 0.8579      | 81.04    |
| 0.8578      | 81.07    |
| 0.8577      | 81.11    |
| 0.8576      | 81.14    |
| 0.8575      | 81.18    |
| 0.8574      | 81.21    |
| 0.8573      | 81.25    |
| 0.8572      | 81.28    |
| 0.8571      | 81.32    |
| 0.857       | 81.35    |
| 0.8569      | 81.39    |
| 0.8568      | 81.43    |
| 0.8567      | 81.46    |
| 0.8566      | 81.5     |
| 0.8565      | 81.53    |
| 0.8564      | 81.57    |
| 0.8563      | 81.6     |
| 0.8562      | 81.64    |
| 0.8561      | 81.67    |
| 0.856       | 81.71    |
| 0.8559      | 81.74    |
| 0.8558      | 81.78    |
| 0.8557      | 81.81    |
| 0.8556      | 81.85    |
| 0.8555      | 81.88    |
| 0.8554      | 81.92    |
| 0.8553      | 81.95    |
| 0.8552      | 81.99    |
| 0.8551      | 82.02    |
| 0.85        | 83.78    |
| 0.8499      | 83.82    |
| 0.8498      | 83.85    |
| 0.8497      | 83.88    |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.8496      | 83.92    |
| 0.8495      | 83.95    |
| 0.8494      | 83.99    |
| 0.8493      | 84.02    |
| 0.8492      | 84.05    |
| 0.8491      | 84.09    |
| 0.849       | 84.12    |
| 0.8489      | 84.15    |
| 0.8488      | 84.19    |
| 0.8487      | 84.22    |
| 0.8486      | 84.26    |
| 0.8485      | 84.29    |
| 0.8484      | 84.32    |
| 0.8483      | 84.36    |
| 0.8482      | 84.39    |
| 0.8481      | 84.42    |
| 0.848       | 84.46    |
| 0.8479      | 84.49    |
| 0.8478      | 84.53    |
| 0.8477      | 84.56    |
| 0.8476      | 84.59    |
| 0.8475      | 84.63    |
| 0.8474      | 84.66    |
| 0.8473      | 84.69    |
| 0.8472      | 84.73    |
| 0.8471      | 84.76    |
| 0.847       | 84.79    |
| 0.8469      | 84.83    |
| 0.8468      | 84.86    |
| 0.8467      | 84.90    |
| 0.8466      | 84.93    |
| 0.8465      | 84.96    |
| 0.8464      | 85.00    |
| 0.8463      | 85.03    |
| 0.8462      | 85.06    |
| 0.8461      | 85.10    |
| 0.846       | 85.13    |
| 0.8459      | 85.16    |

| Sp.gr @20°C | % by Vol |  |  |  |  |
|-------------|----------|--|--|--|--|
| 0.8458      | 85.2     |  |  |  |  |
| 0.8457      | 85.23    |  |  |  |  |
| 0.8456      | 85.26    |  |  |  |  |
| 0.8455      | 8530     |  |  |  |  |
| 0.8454      | 85.33    |  |  |  |  |
| 0.8453      | 85.36    |  |  |  |  |
| 0.8452      | 85.40    |  |  |  |  |
| 0.8451      | 85.43    |  |  |  |  |
| 0.845       | 85.46    |  |  |  |  |
| 0.8449      | 85.49    |  |  |  |  |
| 0.8448      | 85.53    |  |  |  |  |
| 0.8447      | 85.56    |  |  |  |  |
| 0.8446      | 85.59    |  |  |  |  |
| 0.8445      | 85.63    |  |  |  |  |
| 0.8444      | 85.66    |  |  |  |  |
| 0.8443      | 85.69    |  |  |  |  |
| 0.8442      | 85.73    |  |  |  |  |
| 0.8441      | 85.76    |  |  |  |  |
| 0.8440      | 85.79    |  |  |  |  |
| 0.8439      | 85.82    |  |  |  |  |
| 0.8438      | 85.86    |  |  |  |  |
| 0.8437      | 85.89    |  |  |  |  |
| 0.8436      | 85.92    |  |  |  |  |
| 0.8435      | 85.95    |  |  |  |  |
| 0.8434      | 85.99    |  |  |  |  |
| 0.8433      | 86.02    |  |  |  |  |
| 0.8432      | 86.05    |  |  |  |  |
| 0.8431      | 86.08    |  |  |  |  |
| 0.843       | 86.12    |  |  |  |  |
| 0.8429      | 86.15    |  |  |  |  |
| 0.8428      | 86.18    |  |  |  |  |
| 0.8427      | 86.22    |  |  |  |  |
| 0.8426      | 86.25    |  |  |  |  |
| 0.8425      | 86.28    |  |  |  |  |
| 0.8424      | 86.31    |  |  |  |  |
| 0.8423      | 86.35    |  |  |  |  |
| 0.8422      | 86.38    |  |  |  |  |
| 0.8421      | 86.41    |  |  |  |  |

| Sp.gr @20°C | % by Vol |  |  |  |  |
|-------------|----------|--|--|--|--|
| 0.842       | 86.44    |  |  |  |  |
| 0.8419      | 86.48    |  |  |  |  |
| 0.8418      | 86.51    |  |  |  |  |
| 0.8417      | 86.54    |  |  |  |  |
| 0.8416      | 86.57    |  |  |  |  |
| 0.8415      | 86.61    |  |  |  |  |
| 0.8414      | 86.64    |  |  |  |  |
| 0.8413      | 86.67    |  |  |  |  |
| 0.8412      | 86.7     |  |  |  |  |
| 0.8411      | 86.74    |  |  |  |  |
| 0.841       | 86.77    |  |  |  |  |
| 0.8409      | 86.8     |  |  |  |  |
| 0.8408      | 86.83    |  |  |  |  |
| 0.8407      | 86.87    |  |  |  |  |
| 0.8406      | 86.9     |  |  |  |  |
| 0.8405      | 86.93    |  |  |  |  |
| 0.8404      | 86.96    |  |  |  |  |
| 0.8403      | 87       |  |  |  |  |
| 8402        | 87.03    |  |  |  |  |
| 0.8401      | 87.06    |  |  |  |  |
| 0.84        | 87.09    |  |  |  |  |
| 0.8399      | 87.13    |  |  |  |  |
| 0.8398      | 87.16    |  |  |  |  |
| 0.8397      | 87.19    |  |  |  |  |
| 0.8396      | 87.22    |  |  |  |  |
| 0.8395      | 87.26    |  |  |  |  |
| 0.8394      | 87.29    |  |  |  |  |
| 0.8393      | 87.32    |  |  |  |  |
| 0.8392      | 87.35    |  |  |  |  |
| 0.8391      | 87.38    |  |  |  |  |
| 0.839       | 87.42    |  |  |  |  |
| 0.8389      | 87.45    |  |  |  |  |
| 0.8388      | 87.48    |  |  |  |  |
| 0.8387      | 87.51    |  |  |  |  |
| 0.8386      | 87.55    |  |  |  |  |
| 0.8385      | 87.58    |  |  |  |  |
| 0.8384      | 87.61    |  |  |  |  |
| 0.8383      | 87.64    |  |  |  |  |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.8382      | 87.67    |
| 0.8381      | 87.71    |
| 0.838       | 87.74    |
| 0.8379      | 87.77    |
| 0.8378      | 87.8     |
| 0.8377      | 87.83    |
| 0.8376      | 87.86    |
| 0.8375      | 87.90    |
| 0.8374      | 87.93    |
| 0.8373      | 87.96    |
| 0.8372      | 87.99    |
| 0.8371      | 88.02    |
| 0.837       | 88.06    |
| 0.8369      | 88.09    |
| 0.8368      | 88.12    |
| 0.8367      | 88.15    |
| 0.8366      | 88.18    |
| 0.8365      | 88.21    |
| 0.8364      | 88.24    |
| 0.8363      | 88.28    |
| 0.8362      | 88.31    |
| 0.8361      | 88.34    |
| 0.836       | 88.37    |
| 0.8359      | 88.4     |
| 0.8358      | 88.43    |
| 0.8357      | 88.47    |
| 0.8356      | 88.5     |
| 0.8355      | 88.53    |
| 0.8354      | 88.56    |
| 0.8353      | 88.59    |
| 0.8352      | 88.62    |
| 0.8351      | 88.65    |
| 0.835       | 88.68    |
| 0.8349      | 88.72    |
| 0.8348      | 88.75    |
| 0.8347      | 88.78    |
| 0.8346      | 88.81    |
| 0.8345      | 88.84    |

| Sp.gr @20°C | % by Vol |  |  |  |  |
|-------------|----------|--|--|--|--|
| 0.8344      | 88.87    |  |  |  |  |
| 0.8343      | 88.9     |  |  |  |  |
| 0.8342      | 88.93    |  |  |  |  |
| 0.8341      | 88.96    |  |  |  |  |
| 0.834       | 89       |  |  |  |  |
| 0.8339      | 89.03    |  |  |  |  |
| 0.8338      | 89.06    |  |  |  |  |
| 0.8337      | 89.09    |  |  |  |  |
| 0.8336      | 89.12    |  |  |  |  |
| 0.8335      | 89.15    |  |  |  |  |
| 0.8334      | 89.18    |  |  |  |  |
| 0.8333      | 89.21    |  |  |  |  |
| 0.8332      | 89.24    |  |  |  |  |
| 0.8331      | 89.27    |  |  |  |  |
| 0.833       | 89.3     |  |  |  |  |
| 0.8329      | 89.33    |  |  |  |  |
| 0.8328      | 89.37    |  |  |  |  |
| 0.8327      | 89.4     |  |  |  |  |
| 0.8326      | 89.43    |  |  |  |  |
| 0.8325      | 89.46    |  |  |  |  |
| 0.8324      | 89.49    |  |  |  |  |
| 0.8323      | 89.52    |  |  |  |  |
| 0.8322      | 89.55    |  |  |  |  |
| 0.8321      | 89.58    |  |  |  |  |
| 0.832       | 89.61    |  |  |  |  |
| 0.8319      | 89.64    |  |  |  |  |
| 0.8318      | 89.67    |  |  |  |  |
| 0.8317      | 89.7     |  |  |  |  |
| 0.8316      | 89.73    |  |  |  |  |
| 0.8315      | 89.76    |  |  |  |  |
| 0.8314      | 89.79    |  |  |  |  |
| 0.8313      | 89.82    |  |  |  |  |
| 0.8312      | 89.85    |  |  |  |  |
| 0.8311      | 89.88    |  |  |  |  |
| 0.831       | 89.91    |  |  |  |  |
| 0.8309      | 89.94    |  |  |  |  |
| 0.8308      | 89.97    |  |  |  |  |
| 0.8307      | 90       |  |  |  |  |

| Sp.gr @20°C | % by Vol |
|-------------|----------|
| 0.8306      | 90.04    |
| 0.8305      | 90.07    |
| 0.8304      | 90.1     |
| 0.8303      | 90.13    |
| 0.8302      | 90.16    |
| 0.8301      | 90.19    |
| 0.825       | 91.69    |
| 0.8249      | 91.72    |

ANNEXURE-II

CONCENTRATION (IN WEIGHT %) OF ETHANOL-WATER MIXTURE VS. SPECIFIC GRAVITY AT VARIOUS TEMPERATURE

| Wt % Ethanol 20 | Temperature (degC) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | wt%                |          | Temperature                             | (degC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                         |
|-----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|----------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------|
|                 | 20                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                 | 35                 | Ethanol  | 20                                      | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                           | 35                                      |
| 0               | 0.99823            | 0.99708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.99568            | 0.99406            | 50       | 0.91384                                 | 0.90985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.90580                                      | 0.90168                                 |
| 1               | 0.99636            | 0.9952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.99379            | 0.99217            | 51       | 0.91160                                 | 0.90760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.90353                                      | 0.89940                                 |
| 2               | 0.99453            | 0.99336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.99194            | 0.99031            | 52       | 0.90936                                 | 0.90534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.90125                                      | 0.89710                                 |
| 3               | 0.99275            | 0.99157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.99014            | 0.98849            | 53       | 0.90711                                 | 0.90307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.89896                                      | 0.89479                                 |
| 4               | 0.99273            | 0.98984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.98839            | 0.98672            | 54       | 0.90485                                 | 0.90307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.89667                                      | 0.89248                                 |
| -               |                    | signal de la constantina della | 500000000000       | District States    | -        | - Section Code                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25-45-00-00-00-00-00-00-00-00-00-00-00-00-00 | I STATE OF THE PARTY OF                 |
| 5               | 0.98938            | 0.98817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.98679            | 0.98501            | 55       | 0.90258                                 | 0.89850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.89437                                      | 0.89016                                 |
| 6               | 0.9878             | 0.98656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.98507            | 0.98335            | 56       | 0.90031                                 | 0.89621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.89206                                      | 0.88784                                 |
| 7               | 0.98627            | 0.98500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.98347            | 0.98172            | 57       | 0.89803                                 | 0.89392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.88975                                      | 0.88552                                 |
| 8               | 0.98478            | 0.98346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.98189            | 0.98009            | 58       | 0.89574                                 | 0.89162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.88744                                      | 0.88319                                 |
| 9               | 0.98331            | 0.98193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.98031            | 0.97846            | 59       | 0.89344                                 | 0.88931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.88512                                      | 0.88085                                 |
| 10              | 0.98187            | 0.98043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.97875            | 0.97685            | 60       | 0.89113                                 | 0.88699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.88278                                      | 0.87851                                 |
| 11              | 0.98047            | 0.97897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.97723            | 0.97527            | 61       | 0.88882                                 | 0.88446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.88044                                      | 0.87615                                 |
| 12              | 0.97910            | 0.97753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.97573            | 0.97371            | 62       | 0.88650                                 | 0.88233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.87809                                      | 0.87379                                 |
| 13              | 0.97775            | 0.97661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.97424            | 0.97216            | 63       | 0.88417                                 | 0.87998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.87574                                      | 0.87142                                 |
| 14              | 0.97643            | 0.97472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.97278            | 0.97063            | 64       | 0.88183                                 | 0.87763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.87337                                      | 0.86905                                 |
| 15              | 0.97514            | 0.97334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.97133            | 0.96911            | 65       | 0.87948                                 | 0.87527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.87100                                      | 0.86667                                 |
| 16              | 0.97387            | 0.97199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96990            | 0.9676             | 66       | 0.87713                                 | 0.87291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.86863                                      | 0.86429                                 |
| 17              | 0.97259            | 0.97062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96844            | 0.96607            | 67       | 0.87477                                 | 0.87054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.86625                                      | 0.86190                                 |
| 18              | 0.97129            | 0.96923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96697            | 0.96452            | 68       | 0.87241                                 | 0.86817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.86387                                      | 0.85950                                 |
| 19              | 0.96997            | 0.96782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96547            | 0.96294            | 69       | 0.87004                                 | 0.86579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.86148                                      | 0.85710                                 |
| 20              | 0.96864            | 0.96639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96395            | 0.96134            | 70       | 0.86766                                 | 0.86340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.85908                                      | 0.85470                                 |
| 21              | 0.96864            | 0.96495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96395            | 0.96134            | 71       | 0.86527                                 | 0.86340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.85908                                      | 0.8522                                  |
| 22              |                    | 100 Sept. 100 Se |                    |                    | 72       | Control (1997)                          | A CONTRACTOR OF THE PARTY OF TH | A CONTRACTOR CONTRACTOR                      | 400000000000000000000000000000000000000 |
| 23              | 0.96592            | 0.96348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96087            | 0.95809            | 1000     | 0.86287                                 | 0.85859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.85426                                      | 0.84986                                 |
| 24              | 0.96453<br>0.96312 | 0.96199<br>0.96048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.95929<br>0.95769 | 0.95643<br>0.95476 | 73<br>74 | 0.86047<br>0.85806                      | 0.85618<br>0.85376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.85184<br>0.84941                           | 0.84743                                 |
|                 |                    | NAME OF TAXABLE PARTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHICAGO CONTRACTOR |                    | -        |                                         | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15-30-00 (15-50-00 dos                       |                                         |
| 25              | 0.96168            | 0.95895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.95607            | 0.95306            | 75       | 0.85564                                 | 0.85134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.84698                                      | 0.84257                                 |
| 26              | 0.96020            | 0.95738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.95442            | 0.95133            | 76       | 0.85322                                 | 0.84891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.84455                                      | 0.84013                                 |
| 27              | 0.95867            | 0.95576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.95272            | 0.94995            | 77       | 0.85079                                 | 0.84647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.84211                                      | 0.83760                                 |
| 28              | 0.95710            | 0.95410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.95098            | 0.95774            | 78       | 0.84835                                 | 0.84403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.83966                                      | 0.83523                                 |
| 29              | 0.95548            | 0.95241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.94922            | 0.94590            | 79       | 0.84590                                 | 0.84158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.83720                                      | 0.8327                                  |
| 30              | 0.95382            | 0.95067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.94741            | 0.94403            | 80       | 0.84344                                 | 0.83911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.83473                                      | 0.8302                                  |
| 31              | 0.95212            | 0.94890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.94557            | 0.94214            | 81       | 0.84096                                 | 0.83664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.83224                                      | 0.8278                                  |
| 32              | 0.95038            | 0.94709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.94370            | 0.94021            | 82       | 0.83848                                 | 0.83415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.82974                                      | 0.8253                                  |
| 33              | 0.94860            | 0.94525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.94180            | 0.93825            | 83       | 0.83599                                 | 0.83164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.82724                                      | 0.8227                                  |
| 34              | 0.94679            | 0.94337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93986            | 0.93626            | 84       | 0.83348                                 | 0.82913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.82473                                      | 0.8202                                  |
| 35              | 0.94494            | 0.94146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93790            | 0.93425            | 85       | 0.83095                                 | 0.82660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.82220                                      | 0.8177                                  |
| 36              | 0.94306            | 0.93952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93591            | 0.93221            | 86       | 0.82840                                 | 0.82405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.81965                                      | 0.8151                                  |
| 37              | 0.94114            | 0.93756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93390            | 0.93016            | 87       | 0.82583                                 | 0.82148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.81708                                      | 0.8126                                  |
| 38              | 0.93919            | 0.93556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.93186            | 0.92808            | 88       | 0.82323                                 | 0.81888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.81448                                      | 0.8100                                  |
| 39              | 0.93720            | 0.93353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.92979            | 0.92597            | 89       | 0.82062                                 | 0.81626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.81186                                      | 0.8074                                  |
| 40              | 0.93518            | 0.93148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.92770            | 0.92385            | 90       | 0.81797                                 | 0.81362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.80922                                      | 0.8047                                  |
| 41              | 0.93314            | 0.92940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.92770            | 0.92365            | 91       | 0.81529                                 | 0.81094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.80655                                      | 0.8021                                  |
| 42              | 0.93314            | 0.92940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.923344           | 0.92170            | 92       | 0.81329                                 | 0.81094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.80833                                      | 0.7994                                  |
| 43              | 0.93107            | 0.92729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.92344            | 0.91733            | 93       | 0.80983                                 | 0.80549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.80364                                      | 0.79669                                 |
| 44              | 0.92685            | 0.92316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.92128            | 0.91733            | 94       | 0.80705                                 | 0.80549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.79835                                      | 0.79393                                 |
|                 |                    | 200000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                    |          | *************************************** | 200000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100000000000000000000000000000000000000      | arrange (No.                            |
| 45              | 0.92472            | 0.92085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.91692            | 0.91291            | 95       | 0.80424                                 | 0.79991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.79555                                      | 0.79114                                 |
| 46              | 0.92257            | 0.91868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.91472            | 0.91069            | 96       | 0.80138                                 | 0.79706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.79271                                      | 0.7883                                  |
| 47              | 0.92041            | 0.91649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.91250            | 0.90845            | 97       | 0.79846                                 | 0.79415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.78991                                      | 0.78543                                 |
| 48              | 0.91823            | 0.91426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.91028            | 0.90621            | 98       | 0.79547                                 | 0.79117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.78684                                      | 0.78247                                 |
| 49              | 0.91604            | 0.91208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.90805            | 0.90396            | 99       | 0.79543                                 | 0.78814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.78382                                      | 0.77940                                 |
|                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    | 100      | 0.78934                                 | 0.78506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.78075                                      | 0.7764                                  |

NOTE: Numbers obtained from Table 3-110 (Pg.3.89) "Perry's Chemical Engineers' Handbook", 6<sup>th</sup> Ed.

## RAPID ANALYTICAL FOOD TESTING (RAFT) KIT/ EQUIPMENT

| Alternate Rapid kits/equipment may be used to get quick results for screening and surveillar purposes, provided the kit/equipment is approved by FSSA(I). Details of the rapid food testing equipment approved by FSSA(I) are available at https://www.fssai.gov.in/cms/raft.php |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                  |  |



Food Safety and Standards Authority of India (Ministry of Health and Family Welfare) FDA Bhawan, Kotla Road, New Delhi-110002 www.fssai.gov.in

For any query contact: sp-sampling@fssai.gov.in